Analytical Finance: Volume II The Mathematics of Interest Rate Derivatives, Markets, Risk and Valuation /

Dettagli Bibliografici
Autore principale: Röman, Jan R. M. (Autore)
Ente Autore: SpringerLink (Online service)
Riassunto:XXXI, 728 p. 141 illus.
text
Lingua:inglese
Pubblicazione: Cham : Springer International Publishing : Imprint: Palgrave Macmillan, 2017.
Edizione:1st ed. 2017.
Soggetti:
Accesso online:https://doi.org/10.1007/978-3-319-52584-6
Natura: Elettronico Libro

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-52584-6
003 DE-He213
005 20240326113113.0
007 cr nn 008mamaa
008 171201s2017 sz | s |||| 0|eng d
020 |a 9783319525846  |9 978-3-319-52584-6 
024 7 |a 10.1007/978-3-319-52584-6  |2 doi 
050 4 |a HG176.7 
072 7 |a KFFM  |2 bicssc 
072 7 |a BUS027010  |2 bisacsh 
072 7 |a KFFM  |2 thema 
082 0 4 |a 332  |2 23 
082 0 4 |a 658.15  |2 23 
100 1 |a Röman, Jan R. M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analytical Finance: Volume II  |h [electronic resource] :  |b The Mathematics of Interest Rate Derivatives, Markets, Risk and Valuation /  |c by Jan R. M. Röman. 
250 |a 1st ed. 2017. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Palgrave Macmillan,  |c 2017. 
300 |a XXXI, 728 p. 141 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Pricing via Arbitrage -- The Central Limit Theorem -- The Binomial model -- More on Binomial models -- Finite difference methods -- Value-at-Risk – VaR -- Introduction to probability theory -- Stochastic integration -- Partial parabolic differential equations and Feynman-Kač -- The Black-Scholes-Merton model -- American versus European options -- Analytical pricing formulas for American options -- Poisson processes and jump diffusion -- Diffusion models in general -- Hedging -- Exotic Options -- Volatility -- Something about weather derivatives -- A Practical guide to pricing -- Pricing using deflators -- Securities with dividends -- Some Fixed-Income securities and Black-Scholes. 
520 |a Analytical Finance is a comprehensive introduction to the financial engineering of equity and interest rate instruments for financial markets. Developed from notes from the author’s many years in quantitative risk management and modeling roles, and then for the Financial Engineering course at Malardalen University, it provides exhaustive coverage of vanilla and exotic mathematical finance applications for trading and risk management, combining rigorous theory with real market application. Volume I – Equity Derivatives Markets, Valuation and Risk Management. Coverage includes: The fundamentals of stochastic processes used in finance including the change of measure with Girsanov transformation and the fundamentals of probability throry. Discrete time models, such as various binomial models and numerical solutions to Partial Differential Equations (PDEs) Monte-Carlosimulations and Value-at-Risk (VaR) Continuous time models, such as Black–Scholes-Merton and similar with extensions Arbitrage theory in discrete and continuous time models Volume II – Interest Rate Derivative Markets, Valuation and Risk Management Coverage includes: Interest Rates including negative interest rates Valuation and model most kinds of IR instruments and their definitions. Bootstrapping; how to create an interest curve from prices of traded instruments. The multi curve framework and collateral discounting Difference of bootstrapping for trading and IR Risk Models and risk with positive and negative interest rates. Risk measures of IR instruments Option Adjusted Spread and embedded optionality. Pricing theory, calibration and stochastic processes of interest rates Numerical methods; Binomial and trinomial trees, PDEs (Crank–Nicholson), Newton–Raphson in 2 dimension. Black models, Normal models and Market models Pricing before and after the credit crises and the multiple curve framework. Valuation with collateral agreements, CVA, DVA and FVA. 
650 0 |a Financial engineering. 
650 0 |a Social sciences  |x Mathematics. 
650 0 |a Capital market. 
650 0 |a Financial risk management. 
650 1 4 |a Financial Engineering. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
650 2 4 |a Capital Markets. 
650 2 4 |a Risk Management. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319525839 
776 0 8 |i Printed edition:  |z 9783319525853 
856 4 0 |u https://doi.org/10.1007/978-3-319-52584-6 
912 |a ZDB-2-ECF 
912 |a ZDB-2-SXEF 
950 |a Economics and Finance (SpringerNature-41170) 
950 |a Economics and Finance (R0) (SpringerNature-43720)