GPT for Python-Coding in Computational Materials Science and Mechanics From Prompt Engineering to Solutions in Worked-Out Examples /

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Eidel, Bernhard (Editor)
Summary:XII, 263 p. 100 illus., 52 illus. in color.
text
Language:English
Published: Cham : Springer Nature Switzerland : Imprint: Springer, 2025.
Edition:1st ed. 2025.
Series:Studies in Computational Intelligence, 1198
Subjects:
Online Access:https://doi.org/10.1007/978-3-031-85470-5
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-85470-5
003 DE-He213
005 20250806175830.0
007 cr nn 008mamaa
008 250620s2025 sz | s |||| 0|eng d
020 |a 9783031854705  |9 978-3-031-85470-5 
024 7 |a 10.1007/978-3-031-85470-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a GPT for Python-Coding in Computational Materials Science and Mechanics  |h [electronic resource] :  |b From Prompt Engineering to Solutions in Worked-Out Examples /  |c edited by Bernhard Eidel. 
250 |a 1st ed. 2025. 
264 1 |a Cham :  |b Springer Nature Switzerland :  |b Imprint: Springer,  |c 2025. 
300 |a XII, 263 p. 100 illus., 52 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
341 0 |b Table of contents navigation  |2 onix 
341 0 |b Single logical reading order  |2 onix 
341 0 |b Short alternative textual descriptions  |2 onix 
341 0 |b Use of color is not sole means of conveying information  |2 onix 
341 0 |b Use of high contrast between text and background color  |2 onix 
341 0 |b Next / Previous structural navigation  |2 onix 
341 0 |b All non-decorative content supports reading without sight  |2 onix 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 1198 
505 0 |a Topics of Computational Materials Science -- Generation of Atomic Scale Single Crystals -- Molecular Dynamics Simulation of Noble Gases -- Phase Field Modeling of Grain Growth.-Modeling Corrosion Using a Cellular Automaton -- Instationary Heat Conduction on Rectangular Domains with Arbitrary Circular Holes -- Topics of Deep Learning Based Materials Science -- Transfer Learning for Alloy Classification based on Microstructure Images -- Transfer Learning for Microstructure Image Segmentation -- Topics of Computational Analysis of Waves and Fluid Mechanics -- Elastic Wave Propagation -- Electromagnetic Wave Propagation in Dielectric Media -- Flow Around an Obstacle Using the Lattice Boltzmann Method.-Conclusions -- Learned Lessons – Recommendations. 
520 |a This book covers all the topics about ChatGPT required to successfully generate Python code to solve problems in computational materials science and mechanics, complemented by numerous fully worked-out applications. The complete work flow for AI-assisted coding is given, including: (i) prompt engineering providing a powerful toolset for how to give coding assignments to ChatGPT effectively; (ii) commented code listings; and (iii) tips and tricks to verify the codes in rigorous tests including human interventions to fix issues and gaps. Finally, (iv) the coding projects are critically reviewed to address the strengths and remaining weaknesses of the Chatbot, including explicit recommendations on how to communicate with GPT. For the steps (i)–(iv) the book presents a curated selection of intriguing problems from computational materials science and computational mechanics including machine learning for problem-solving. These problems are carefully chosen for their relevance to current research and industrial applications and their suitability for showcasing the advanced capabilities of GPT-4 for code generation. Spanning from predicting material behavior under various conditions to simulating complex mechanical interactions, the problems serve as a canvas on which GPT-4 paints its solutions, demonstrating not just accuracy but creativity in problem-solving. Therefore, the book serves as a valuable primer for both undergraduate and graduate students, as well as a review for research scientists and practicing engineers. 
532 8 |a Accessibility summary: This PDF does not fully comply with PDF/UA standards, but does feature limited screen reader support, described non-text content (images, graphs), bookmarks for easy navigation and searchable, selectable text. Users of assistive technologies may experience difficulty navigating or interpreting content in this document. We recognize the importance of accessibility, and we welcome queries about accessibility for any of our products. If you have a question or an access need, please get in touch with us at accessibilitysupport@springernature.com. 
532 8 |a No reading system accessibility options actively disabled 
532 8 |a Publisher contact for further accessibility information: accessibilitysupport@springernature.com 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Eidel, Bernhard.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031854699 
776 0 8 |i Printed edition:  |z 9783031854712 
776 0 8 |i Printed edition:  |z 9783031854729 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 1198 
856 4 0 |u https://doi.org/10.1007/978-3-031-85470-5 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)