Artificial Intelligent Approaches in Petroleum Geosciences

Podrobná bibliografie
Korporativní autor: SpringerLink (Online service)
Další autoři: Cranganu, Constantin (Editor)
Shrnutí:XVIII, 277 p. 176 illus., 166 illus. in color.
text
Jazyk:angličtina
Vydáno: Cham : Springer International Publishing : Imprint: Springer, 2024.
Vydání:2nd ed. 2024.
Témata:
On-line přístup:https://doi.org/10.1007/978-3-031-52715-9
Médium: Elektronický zdroj Kniha
Obsah:
  • Preface to the 2nd edition
  • Preface to the 1st Edition
  • 1. Applications of Data-Driven Techniques in Reservoir Modeling and Management
  • Part 1: Waterflooding
  • Part 2: Water Alternating Gas Injection, CO2 Storage, and Property Estimations
  • 2. Comparison of three machine learning approaches in determining Total Organic Carbon (TOC): A case study from Marcellus shale formation, New York state
  • 3. Gated Recurrent Units for Lithofacies Classification based on Seismic Inversion
  • 4. Application of Artificial Neural Networks in Geoscience and Petroleum Industry
  • 5. On Support Vector Regression to Predict Poisson’s Ratio and Young’s Modulus of Reservoir Rock
  • 6. Use of Active Learning Method to Determine the Presence and Estimate the Magnitude of Abnormally Pressured Fluid Zones: A Case Study from the Anadarko Basin, Oklahoma
  • 7. Active Learning Method for Estimating Missing Logs in Hydrocarbon Reservoirs
  • 8. Improving the Accuracy of Active Learning Method via Noise Injection for Estimating Hydraulic Flow Units: An Example from a Heterogeneous Carbonate Reservoir
  • 9. Well Log Analysis by Global Optimization-based Interval Inversion Method
  • 10. Permeability Estimation in Petroleum Reservoir by Meta-heuristics: An Overview
  • Index.