Machine Learning for Causal Inference

書目詳細資料
企業作者: SpringerLink (Online service)
其他作者: Li, Sheng (Editor), Chu, Zhixuan (Editor)
總結:XVI, 298 p. 73 illus., 49 illus. in color.
text
語言:英语
出版: Cham : Springer International Publishing : Imprint: Springer, 2023.
版:1st ed. 2023.
主題:
在線閱讀:https://doi.org/10.1007/978-3-031-35051-1
格式: 電子 電子書
書本目錄:
  • Overview of the Book
  • Causal Inference Preliminary
  • Causal Effect Estimation: Basic Methodologies
  • Causal Inference on Graphs
  • Causal Effect Estimation: Recent Progress, Challenges, and Opportunities
  • Fair Machine Learning Through the Lens of Causality
  • Causal Explainable AI
  • Causal Domain Generalization
  • Causal Inference and Natural Language Processing
  • Causal Inference and Recommendations
  • Causality Encourage the Identifiability of Instance-Dependent Label Noise
  • Causal Interventional Time Series Forecasting on Multi-horizon and Multi-series Data
  • Continual Causal Effect Estimation
  • Summary.