MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-27058-1
003 DE-He213
005 20240701114102.0
007 cr nn 008mamaa
008 230609s2023 sz | s |||| 0|eng d
020 |a 9783031270581  |9 978-3-031-27058-1 
024 7 |a 10.1007/978-3-031-27058-1  |2 doi 
050 4 |a T57.6-.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
082 0 4 |a 658.403  |2 23 
245 1 0 |a Retail Space Analytics  |h [electronic resource] /  |c edited by Ahmed Ghoniem, Bacel Maddah. 
250 |a 1st ed. 2023. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2023. 
300 |a XII, 181 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 339 
505 0 |a Effect of Customer Travel Behavior on Grid Layout and Shelf -- A Solver-Free Heuristic for Store-wide Shelf Space Allocation -- In-Store Tra c Density Estimation -- A Simulation Based Tool to Guide Periodic Changes in a Supermarket Layout -- Data-Driven Analytical Grocery Store Design -- Optimizing Stock-Keeping Unit Selection for Promotional Display Space at Grocery Retailers -- Merchandise Placement Optimization -- Problems and Opportunities of Applied Optimization Models in Retail Space Planning. 
520 |a This edited volume presents state-of-the-art research that can leverage large-scale sensory data collected in grocery/retail stores where a single customer visit may generate nearly 10,000 data points. For decades, retail shelf space optimization has been confined to the analysis of product allocation decisions over a limited number of shelves, often taken in isolation. Such models incorporated interesting concepts relating to space and cross-space elasticity in the design of planograms. Although useful, these models have not addressed the bigger picture of planning store shelf space in a more holistic manner. It is important to note that the space planning analytics in the book are particularly important in an era where e-commerce is on the rise and brick-and-mortar retailing is declining and experiencing severe crises (the retail apocalypse). This is the first research-oriented book that examines novel problems in store space analytics, triggered by modern-day sensorytechnologies, customer trackers, and transactional tools (point-of-sales, etc.). In fact, such transformative technologies have prompted the development of new and exciting business practices, accompanied by the need for powerful data-driven models and analyses in retail shelf space and layout planning. The book will facilitate developing algorithms and decision tools that allow a better leverage of the data collected from these mediums. 
650 0 |a Operations research. 
650 0 |a Sales management. 
650 0 |a Consumer behavior. 
650 0 |a Production management. 
650 0 |a Business information services. 
650 1 4 |a Operations Research and Decision Theory. 
650 2 4 |a Sales and Distribution. 
650 2 4 |a Consumer Behavior. 
650 2 4 |a Operations Management. 
650 2 4 |a Operations Management. 
650 2 4 |a IT in Business. 
700 1 |a Ghoniem, Ahmed.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Maddah, Bacel.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031270574 
776 0 8 |i Printed edition:  |z 9783031270598 
776 0 8 |i Printed edition:  |z 9783031270604 
830 0 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 339 
856 4 0 |u https://doi.org/10.1007/978-3-031-27058-1 
912 |a ZDB-2-BUM 
912 |a ZDB-2-SXBM 
950 |a Business and Management (SpringerNature-41169) 
950 |a Business and Management (R0) (SpringerNature-43719)