Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances

Chi tiết về thư mục
Những tác giả chính: Sun, Yanan (Tác giả), Yen, Gary G. (Tác giả), Zhang, Mengjie (Tác giả)
Tác giả của công ty: SpringerLink (Online service)
Tóm tắt:XVI, 331 p. 91 illus., 77 illus. in color.
text
Ngôn ngữ:Tiếng Anh
Được phát hành: Cham : Springer International Publishing : Imprint: Springer, 2023.
Phiên bản:1st ed. 2023.
Loạt:Studies in Computational Intelligence, 1070
Những chủ đề:
Truy cập trực tuyến:https://doi.org/10.1007/978-3-031-16868-0
Định dạng: Điện tử Sách
Mục lục:
  • Part I: Fundamentals and Backgrounds
  • Evolutionary Computation
  • Deep Neural Networks
  • Part II: Evolutionary Deep Neural Architecture Search for Unsupervised DNNs
  • Architecture Design for Stacked AEs and DBNs
  • Architecture Design for Convolutional Auto-Encoders
  • Architecture Design for Variational Auto-Encoders
  • Part III: Evolutionary Deep Neural Architecture Search for Supervised DNNs
  • Architecture Design for Plain CNNs
  • Architecture Design for RBs and DBs Based CNNs
  • Architecture Design for Skip-Connection Based CNNs
  • Hybrid GA and PSO for Architecture Design
  • Internet Protocol Based Architecture Design
  • Differential Evolution for Architecture Design
  • Architecture Design for Analyzing Hyperspectral Images
  • Part IV: Recent Advances in Evolutionary Deep Neural Architecture Search
  • Encoding Space Based on Directed Acyclic Graphs
  • End-to-End Performance Predictors
  • Deep Neural Architecture Pruning
  • Deep Neural Architecture Compression
  • Distribution Training Framework for Architecture Design.