Machine Learning and Its Application to Reacting Flows ML and Combustion /

التفاصيل البيبلوغرافية
مؤلف مشترك: SpringerLink (Online service)
مؤلفون آخرون: Swaminathan, Nedunchezhian (المحرر), Parente, Alessandro (المحرر)
الملخص:XI, 346 p. 127 illus., 98 illus. in color.
text
اللغة:الإنجليزية
منشور في: Cham : Springer International Publishing : Imprint: Springer, 2023.
الطبعة:1st ed. 2023.
سلاسل:Lecture Notes in Energy, 44
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1007/978-3-031-16248-0
التنسيق: الكتروني كتاب
جدول المحتويات:
  • Introduction
  • ML Algorithms, Techniques and their Application to Reactive Molecular Dynamics Simulations
  • Big Data Analysis, Analytics & ML role
  • ML for SGS Turbulence (including scalar flux) Closures
  • ML for Combustion Chemistry
  • Applying CNNs to model SGS flame wrinkling in thickened flame LES (TFLES)
  • Machine Learning Strategy for Subgrid Modelling of Turbulent Combustion using Linear Eddy Mixing based Tabulation
  • MILD Combustion–Joint SGS FDF
  • Machine Learning for Principal Component Analysis & Transport
  • Super Resolution Neural Network for Turbulent non-premixed Combustion
  • ML in Thermoacoustics
  • Concluding Remarks & Outlook.