Data Analysis with Machine Learning for Psychologists Crash Course to Learn Python 3 and Machine Learning in 10 hours /

Xehetasun bibliografikoak
Egile nagusia: Ghosh, Chandril (Egilea)
Erakunde egilea: SpringerLink (Online service)
Gaia:XIII, 161 p. 121 illus., 113 illus. in color.
text
Hizkuntza:ingelesa
Argitaratua: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edizioa:1st ed. 2022.
Gaiak:
Sarrera elektronikoa:https://doi.org/10.1007/978-3-031-14634-3
Formatua: Baliabide elektronikoa Liburua

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-14634-3
003 DE-He213
005 20230810180120.0
007 cr nn 008mamaa
008 221017s2022 sz | s |||| 0|eng d
020 |a 9783031146343  |9 978-3-031-14634-3 
024 7 |a 10.1007/978-3-031-14634-3  |2 doi 
050 4 |a BF1-990 
072 7 |a JM  |2 bicssc 
072 7 |a PSY000000  |2 bisacsh 
072 7 |a JM  |2 thema 
082 0 4 |a 150  |2 23 
100 1 |a Ghosh, Chandril.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Analysis with Machine Learning for Psychologists  |h [electronic resource] :  |b Crash Course to Learn Python 3 and Machine Learning in 10 hours /  |c by Chandril Ghosh. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XIII, 161 p. 121 illus., 113 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Step 1:Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. Python Programming -- Step 2:Data Pre-Processing -- Step 3: Data Analysis with Machine Learning -- End Note. . 
520 |a The power of data drives the digital economy of the 21st century. It has been argued that data is as vital a resource as oil was during the industrial revolution. An upward trend in the number of research publications using machine learning in some of the top journals in combination with an increasing number of academic recruiters within psychology asking for Python knowledge from applicants indicates a growing demand for these skills in the market. While there are plenty of books covering data science, rarely, if ever, books in the market address the need of social science students with no computer science background. They are typically written by engineers or computer scientists for people of their discipline. As a result, often such books are filled with technical jargon and examples irrelevant to psychological studies or projects. In contrast, this book was written by a psychologist in a simple, easy-to-understand way that is brief and accessible. The aim for this book was to make the learning experience on this topic as smooth as possible for psychology students/researchers with no background in programming or data science. Completing this book will also open up an enormous amount of possibilities for quantitative researchers in psychological science, as it will enable them to explore newer types of research questions. . 
650 0 |a Psychology. 
650 0 |a Business  |x Data processing. 
650 0 |a Cognitive science. 
650 0 |a Mental health. 
650 0 |a Social sciences  |x Statistical methods. 
650 0 |a Psychology  |x Methodology. 
650 1 4 |a Behavioral Sciences and Psychology. 
650 2 4 |a Business Analytics. 
650 2 4 |a Cognitive Science. 
650 2 4 |a Mental Health. 
650 2 4 |a Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy. 
650 2 4 |a Psychological Methods. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031146336 
776 0 8 |i Printed edition:  |z 9783031146350 
776 0 8 |i Printed edition:  |z 9783031146367 
856 4 0 |u https://doi.org/10.1007/978-3-031-14634-3 
912 |a ZDB-2-BSP 
912 |a ZDB-2-SXBP 
950 |a Behavioral Science and Psychology (SpringerNature-41168) 
950 |a Behavioral Science and Psychology (R0) (SpringerNature-43718)