The Quadratic Unconstrained Binary Optimization Problem Theory, Algorithms, and Applications /

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Punnen, Abraham P. (Editor)
Summary:XIII, 319 p. 17 illus., 4 illus. in color.
text
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Subjects:
Online Access:https://doi.org/10.1007/978-3-031-04520-2
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-04520-2
003 DE-He213
005 20240326115719.0
007 cr nn 008mamaa
008 220712s2022 sz | s |||| 0|eng d
020 |a 9783031045202  |9 978-3-031-04520-2 
024 7 |a 10.1007/978-3-031-04520-2  |2 doi 
050 4 |a T57.6-.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
082 0 4 |a 658.403  |2 23 
245 1 4 |a The Quadratic Unconstrained Binary Optimization Problem  |h [electronic resource] :  |b Theory, Algorithms, and Applications /  |c edited by Abraham P. Punnen. 
250 |a 1st ed. 2022. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2022. 
300 |a XIII, 319 p. 17 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to QUBO -- Applications and Computational Advances for Solving the QUBO Model -- Complexity and Polynomially Solvable Special Cases of QUBO -- The Boolean Quadric Polytope -- Autarkies and Persistencies for QUBO -- Mathematical Programming Models and Exact Algorithms -- The Random QUBO -- Fast Heuristics and Approximation Algorithms -- Metaheuristic Algorithms -- The Bipartite QUBO -- QUBO Software. 
520 |a The quadratic binary optimization problem (QUBO) is a versatile combinatorial optimization model with a variety of applications and rich theoretical properties. Application areas of the model include finance, cluster analysis, traffic management, machine scheduling, VLSI physical design, physics, quantum computing, engineering, and medicine. In addition, various mathematical optimization models can be reformulated as a QUBO, including the resource constrained assignment problem, set partitioning problem, maximum cut problem, quadratic assignment problem, the bipartite unconstrained binary optimization problem, among others. This book presents a systematic development of theory, algorithms, and applications of QUBO. It offers a comprehensive treatment of QUBO from various viewpoints, including a historical introduction along with an in-depth discussion of applications modelling, complexity and polynomially solvable special cases, exact and heuristic algorithms, analysis of approximation algorithms, metaheuristics, polyhedral structure, probabilistic analysis, persistencies, and related topics. Available software for solving QUBO is also introduced, including public domain, commercial, as well as quantum computing based codes. 
650 0 |a Operations research. 
650 0 |a Mathematical optimization. 
650 0 |a Management science. 
650 0 |a Algorithms. 
650 0 |a Quantum computers. 
650 1 4 |a Operations Research and Decision Theory. 
650 2 4 |a Discrete Optimization. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Algorithms. 
650 2 4 |a Quantum Computing. 
700 1 |a Punnen, Abraham P.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031045196 
776 0 8 |i Printed edition:  |z 9783031045219 
776 0 8 |i Printed edition:  |z 9783031045226 
856 4 0 |u https://doi.org/10.1007/978-3-031-04520-2 
912 |a ZDB-2-BUM 
912 |a ZDB-2-SXBM 
950 |a Business and Management (SpringerNature-41169) 
950 |a Business and Management (R0) (SpringerNature-43719)