Data Science in Engineering, Volume 9 Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics 2022 /
Autor corporatiu: | |
---|---|
Altres autors: | , |
Sumari: | VIII, 156 p. 124 illus., 109 illus. in color. text |
Idioma: | anglès |
Publicat: |
Cham :
Springer International Publishing : Imprint: Springer,
2022.
|
Edició: | 1st ed. 2022. |
Col·lecció: | Conference Proceedings of the Society for Experimental Mechanics Series,
|
Matèries: | |
Accés en línia: | https://doi.org/10.1007/978-3-031-04122-8 |
Format: | Electrònic eBook |
Taula de continguts:
- Chapter 1. Model Updating for Nonlinear Dynamic Digital Twins Using Data-Based Inverse Mapping Models
- Chapter 2. Deep Reinforcement Learning for Active Structure Stabilization
- Chapter 3. Estimation of Structural Vibration Modal Properties Using a Spike-Based Computing Paradigm
- Chapter 4. Environmental-Insensitive Damage Features Based on Transmissibility Coherence
- Chapter 5. Transmittance Anomalies for Model-Based Damage Detection with Finite Element Generated Data and Deep Learning
- Chapter 6. Machine Learning based Condition Monitoring with Multibody Dynamics Models for Gear Transmission Faults
- Chapter 7. Structural Damage Detection Framework Using Metaheuristic Algorithms and Optimal Finite Element Modeling
- Chapter 8. On Aspects of Geometry in SHM and Population-Based SHM
- Chapter 9. A Robust PCA-based Framework for Long-Term Condition Monitoring of Civil Infrastructures
- Chapter 10. Data-Driven Parameter Identification for Turbomachinery Blisks
- Chapter 11. Classification of Rail Irregularities from Axle Box Accelerations using Random Forests and Convolutional Neural Networks
- Chapter 12. Development of a Surrogate Model for Structural Health Monitoring of a UAV Wing Spar
- Chapter 13. On a Description of Aeroplanes and Aeroplane Components using Irreducible Element Models
- Chapter 14. Input Estimation of Four-DOF Nonlinear Building Using Probabilistic Recurrent Neural Network
- Chapter 15. Simulation-Based Damage Detection for Composite Structures with Machine Learning Techniques
- Chapter 16. Synthesizing Dynamic Time-series Data for Structures Under Shock Using Generative Adversarial Networks
- Chapter 17. Multi-Layer Input Deep Learning Applied to Ultrasonic Wavefield Measurements.