Vision, Sensing and Analytics: Integrative Approaches

Detalhes bibliográficos
Autor Corporativo: SpringerLink (Online service)
Outros Autores: Ahad, Md Atiqur Rahman (Editor), Inoue, Atsushi (Editor)
Resumo:X, 413 p. 125 illus., 81 illus. in color.
text
Idioma:inglês
Publicado em: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edição:1st ed. 2021.
Colecção:Intelligent Systems Reference Library, 207
Assuntos:
Acesso em linha:https://doi.org/10.1007/978-3-030-75490-7
Formato: Recurso Electrónico Livro

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-75490-7
003 DE-He213
005 20240322015752.0
007 cr nn 008mamaa
008 210605s2021 sz | s |||| 0|eng d
020 |a 9783030754907  |9 978-3-030-75490-7 
024 7 |a 10.1007/978-3-030-75490-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Vision, Sensing and Analytics: Integrative Approaches  |h [electronic resource] /  |c edited by Md Atiqur Rahman Ahad, Atsushi Inoue. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a X, 413 p. 125 illus., 81 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 207 
505 0 |a Deep Architectures in Visual Transfer Learning -- Deep Reinforcement Learning: A New Frontier in Computer Vision Research -- Deep Learning for Data-driven Predictive Maintenance -- Multi-Criteria Fuzzy Goal Programming under Multi-Uncertainty -- Skeleton-based Human Action Recognition on Large-Scale Datasets. 
520 |a This book serves as the first guideline of the integrative approach, optimal for our new and young generations. Recent technology advancements in computer vision, IoT sensors, and analytics open the door to highly impactful innovations and applications as a result of effective and efficient integration of those. Such integration has brought to scientists and engineers a new approach —the integrative approach. This offers far more rapid development and scalable architecting when comparing to the traditional hardcore developmental approach. Featuring biomedical and healthcare challenges including COVID-19, we present a collection of carefully selective cases with significant added- values as a result of integrations, e.g., sensing with AI, analytics with different data sources, and comprehensive monitoring with many different sensors, while sustaining its readability. 
650 0 |a Computational intelligence. 
650 0 |a Signal processing. 
650 0 |a Computer vision. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Signal, Speech and Image Processing. 
650 2 4 |a Computer Vision. 
700 1 |a Ahad, Md Atiqur Rahman.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Inoue, Atsushi.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030754891 
776 0 8 |i Printed edition:  |z 9783030754914 
776 0 8 |i Printed edition:  |z 9783030754921 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 207 
856 4 0 |u https://doi.org/10.1007/978-3-030-75490-7 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)