Computational Psychometrics: New Methodologies for a New Generation of Digital Learning and Assessment With Examples in R and Python /

Détails bibliographiques
Collectivité auteur: SpringerLink (Online service)
Autres auteurs: von Davier, Alina A. (Éditeur intellectuel), Mislevy, Robert J. (Éditeur intellectuel), Hao, Jiangang (Éditeur intellectuel)
Résumé:X, 262 p. 1 illus.
text
Langue:anglais
Publié: Cham : Springer International Publishing : Imprint: Springer, 2021.
Édition:1st ed. 2021.
Collection:Methodology of Educational Measurement and Assessment,
Sujets:
Accès en ligne:https://doi.org/10.1007/978-3-030-74394-9
Format: Électronique Livre
Table des matières:
  • 1. Introduction. Computational Psychometrics: Towards a Principled Integration of Data Science and Machine Learning Techniques into Psychometrics (Alina A. von Davier, Robert Mislevy and Jiangang Hao)
  • Part I. Conceptualization. 2. Next generation learning and assessment: what, why and how (Robert Mislevy)
  • 3. Computational psychometrics (Alina A. von Davier, Kristen DiCerbo and Josine Verhagen)
  • 4. Virtual performance-based assessments (Jessica Andrews-Todd, Robert Mislevy, Michelle LaMar and Sebastiaan de Klerk)
  • 5. Knowledge Inference Models Used in Adaptive Learning (Maria Ofelia Z. San Pedro and Ryan S. Baker)
  • Part II. Methodology. 6. Concepts and models from Psychometrics (Robert Mislevy and Maria Bolsinova)
  • 7. Bayesian Inference in Large-Scale Computational Psychometrics (Gunter Maris, Timo Bechger and Maarten Marsman)
  • 8. Data science perspectives (Jiangang Hao and Robert Mislevy)
  • 9. Supervised machine learning (Jiangang Hao)
  • 10. Unsupervised machine learning (Pak Chunk Wong)
  • 11. AI and deep learning for educational research (Yuchi Huang and Saad M. Khan)
  • 12. Time series and stochastic processes (Peter Halpin, Lu Ou and Michelle LaMar)
  • 13. Social network analysis (Mengxiao Zhu)
  • 14. Text mining and automated scoring (Michael Flor and Jiangang Hao).