Policy Decision Modeling with Fuzzy Logic Theoretical and Computational Aspects /

Bibliographic Details
Main Author: Guidara, Ali (Author)
Corporate Author: SpringerLink (Online service)
Summary:XII, 134 p. 30 illus., 25 illus. in color.
text
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Studies in Fuzziness and Soft Computing, 405
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-62628-0
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-62628-0
003 DE-He213
005 20240322103417.0
007 cr nn 008mamaa
008 201218s2021 sz | s |||| 0|eng d
020 |a 9783030626280  |9 978-3-030-62628-0 
024 7 |a 10.1007/978-3-030-62628-0  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Guidara, Ali.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Policy Decision Modeling with Fuzzy Logic  |h [electronic resource] :  |b Theoretical and Computational Aspects /  |c by Ali Guidara. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a XII, 134 p. 30 illus., 25 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 405 
505 0 |a Chapter 1. Decision Process and Analytical Frameworks – Levels of Analysis and Paradigmatic Evolution -- Chapter 2. Complex Systems and Public Policy -- Chapter 3. Multiple Streams theory -- Chapter 4. Artificial Intelligence and Fuzzy Logic -- Chapter 5. PODESIM – Policy Decision Emergence Simulation Model 93 -- Chapter 6. Analysis of Results -- Chapter 7. Innovation and Contributions. . 
520 |a This book introduces the concept of policy decision emergence and its dynamics at the sub systemic level of the decision process. This level constitutes the breeding ground of the emergence of policy decisions but remains unexplored due to the absence of adequate tools. It is a nonlinear complex system made of several entities that interact dynamically. The behavior of such a system cannot be understood with linear and deterministic methods. The book presents an innovative multidisciplinary approach that results in the development of a Policy Decision Emergence Simulation Model (PODESIM). This computational model is a multi-level fuzzy inference system that allows the identification of the decision emergence levers. This development represents a major advancement in the field of public policy decision studies. It paves the way for decision emergence modeling and simulation by bridging complex systems theory, multiple streams theory, and fuzzy logic theory. 
650 0 |a Computational intelligence. 
650 0 |a Political planning. 
650 0 |a Control engineering. 
650 0 |a Computational complexity. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Public Policy. 
650 2 4 |a Control and Systems Theory. 
650 2 4 |a Computational Complexity. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030626273 
776 0 8 |i Printed edition:  |z 9783030626297 
776 0 8 |i Printed edition:  |z 9783030626303 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 405 
856 4 0 |u https://doi.org/10.1007/978-3-030-62628-0 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)