Generalized Fractional Calculus New Advancements and Applications /
| Hlavní autor: | |
|---|---|
| Korporativní autor: | |
| Shrnutí: | XV, 498 p. 1 illus. text |
| Jazyk: | angličtina |
| Vydáno: |
Cham :
Springer International Publishing : Imprint: Springer,
2021.
|
| Vydání: | 1st ed. 2021. |
| Edice: | Studies in Systems, Decision and Control,
305 |
| Témata: | |
| On-line přístup: | https://doi.org/10.1007/978-3-030-56962-4 |
| Médium: | Elektronický zdroj Kniha |
Obsah:
- Caputo ψ-fractional Ostrowski inequalities
- Caputo ψ-fractional Ostrowski and Gruss inequalities involving several functions
- Weighted Caputo fractional Iyengar type inequalities
- Generalized Canavati g-fractional Iyengar and Ostrowski inequalities
- Generalized Canavati g-fractional Polya inequalities
- Caputo generalized ψ-fractional integral type inequalities
- Generalized ψ-fractional Quantitative Approximation by Sub-linear Operators
- Generalized g–iterated fractional Quantitative Approximation by Sublinear Operators
- Generalized g–Fractional vector Representation Formula and Bochner integral type inequalities for Banach space valued functions
- Iterated g–Fractional vector Bochner integral Representation Formulae and inequalities for Banach space valued functions
- Vectorial generalized g–fractional direct and iterated Quantitative Approximation by linear operators
- Quantitative Multivariate Complex Korovkin Approximation Theory
- M-fractional integral type inequalities
- Principles of Stochastic Caputo Fractional Calculus with Fractional Approximation of Stochastic Processes
- Trigonometric Caputo Fractional Approximation of Stochastic Processes
- Trigonometric Conformable Fractional Approximation of Stochastic Processe
- Commutative Caputo Fractional Korovkin Approximation for Stochastic Processes
- Trigonometric Commutative Caputo Fractional Korovkin Approximation for Stochastic Processes
- Commutative Conformable Fractional Korovkin Approximation for Stochastic Processes
- Trigonometric Commutative Conformable Fractional Korovkin Approximation for Stochastic Processes
- Concluding Remarks.