Optimization Under Stochastic Uncertainty Methods, Control and Random Search Methods /

Opis bibliograficzny
1. autor: Marti, Kurt (Autor)
Korporacja: SpringerLink (Online service)
Streszczenie:XIV, 393 p. 9 illus.
text
Język:angielski
Wydane: Cham : Springer International Publishing : Imprint: Springer, 2020.
Wydanie:1st ed. 2020.
Seria:International Series in Operations Research & Management Science, 296
Hasła przedmiotowe:
Dostęp online:https://doi.org/10.1007/978-3-030-55662-4
Format: Elektroniczne Książka

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-55662-4
003 DE-He213
005 20240627165923.0
007 cr nn 008mamaa
008 201110s2020 sz | s |||| 0|eng d
020 |a 9783030556624  |9 978-3-030-55662-4 
024 7 |a 10.1007/978-3-030-55662-4  |2 doi 
050 4 |a T57.6-.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
082 0 4 |a 658.403  |2 23 
100 1 |a Marti, Kurt.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optimization Under Stochastic Uncertainty  |h [electronic resource] :  |b Methods, Control and Random Search Methods /  |c by Kurt Marti. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a XIV, 393 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 296 
505 0 |a 1. Optimal Control under Stochastic Uncertainty -- 2. Stochastic Optimization of Regulators -- 3. Optimal Open-Loop Control of Dynamic Systems under Stochastic Uncertainty -- 4. Construction of feedback control by means of homotopy methods -- 5. Constructions of Limit State Functions -- 6. Random Search Procedures for Global Optimization -- 7. Controlled Random Search under Uncertainty -- 8. Controlled Random Search Procedures for Global Optimization -- 9. Mathematical Model of Random Search Methods and Elementary Properties -- 10. Special Random Search Methods -- 11. Accessibility Theorems -- 12. Convergence Theorems -- 13. Convergence of Stationary Random Search Methods for Positive Success Probability -- 14. Random Search Methods of convergence order U(n−") -- 15. Random Search Methods with a Linear Rate of Convergence -- 16. Success/Failure-driven Random Direction Procedures -- 17. Hybrid Methods -- 18. Solving optimization problems under stochastic uncertainty by Random Search Methods(RSM). 
520 |a This book examines application and methods to incorporating stochastic parameter variations into the optimization process to decrease expense in corrective measures. Basic types of deterministic substitute problems occurring mostly in practice involve i) minimization of the expected primary costs subject to expected recourse cost constraints (reliability constraints) and remaining deterministic constraints, e.g. box constraints, as well as ii) minimization of the expected total costs (costs of construction, design, recourse costs, etc.) subject to the remaining deterministic constraints. After an introduction into the theory of dynamic control systems with random parameters, the major control laws are described, as open-loop control, closed-loop, feedback control and open-loop feedback control, used for iterative construction of feedback controls. For approximate solution of optimization and control problems with random parameters and involving expected cost/loss-type objective, constraint functions, Taylor expansion procedures, and Homotopy methods are considered, Examples and applications to stochastic optimization of regulators are given. Moreover, for reliability-based analysis and optimal design problems, corresponding optimization-based limit state functions are constructed. Because of the complexity of concrete optimization/control problems and their lack of the mathematical regularity as required of Mathematical Programming (MP) techniques, other optimization techniques, like random search methods (RSM) became increasingly important. Basic results on the convergence and convergence rates of random search methods are presented. Moreover, for the improvement of the – sometimes very low – convergence rate of RSM, search methods based on optimal stochastic decision processes are presented. In order to improve the convergence behavior of RSM, the random search procedure is embedded into a stochastic decision process for an optimal control of the probability distributions of the search variates (mutation random variables). . 
650 0 |a Operations research. 
650 0 |a Stochastic models. 
650 0 |a Business  |x Data processing. 
650 1 4 |a Operations Research and Decision Theory. 
650 2 4 |a Stochastic Modelling. 
650 2 4 |a Business Informatics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030556617 
776 0 8 |i Printed edition:  |z 9783030556631 
776 0 8 |i Printed edition:  |z 9783030556648 
830 0 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 296 
856 4 0 |u https://doi.org/10.1007/978-3-030-55662-4 
912 |a ZDB-2-BUM 
912 |a ZDB-2-SXBM 
950 |a Business and Management (SpringerNature-41169) 
950 |a Business and Management (R0) (SpringerNature-43719)