Recent Advances on Soft Computing and Data Mining Proceedings of the Fourth International Conference on Soft Computing and Data Mining (SCDM 2020), Melaka, Malaysia, January 22–⁠23, 2020 /

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Ghazali, Rozaida (Editor), Nawi, Nazri Mohd (Editor), Deris, Mustafa Mat (Editor), Abawajy, Jemal H. (Editor)
Summary:XVII, 481 p. 210 illus., 156 illus. in color.
text
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Series:Advances in Intelligent Systems and Computing, 978
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-36056-6
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-3-030-36056-6
003 DE-He213
005 20240314162228.0
007 cr nn 008mamaa
008 191204s2020 sz | s |||| 0|eng d
020 |a 9783030360566  |9 978-3-030-36056-6 
024 7 |a 10.1007/978-3-030-36056-6  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Recent Advances on Soft Computing and Data Mining  |h [electronic resource] :  |b Proceedings of the Fourth International Conference on Soft Computing and Data Mining (SCDM 2020), Melaka, Malaysia, January 22–⁠23, 2020 /  |c edited by Rozaida Ghazali, Nazri Mohd Nawi, Mustafa Mat Deris, Jemal H. Abawajy. 
250 |a 1st ed. 2020. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2020. 
300 |a XVII, 481 p. 210 illus., 156 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Intelligent Systems and Computing,  |x 2194-5365 ;  |v 978 
505 0 |a Chapter 1: An Enhanced Model for Digital Reference Services (MDRS) -- Chapter 2: Fuzzy Random Based Mean Variance Model For Agricultural Production Planning -- Chapter 3: Residual Neural Network vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digit Recognition -- Chapter 4: Incorporating the Markov Chain Model in WBSN for Improving Patients’ Remote Monitoring Systems -- Chapter 5: Designing Deep Neural Network with Chicken Swarm Optimization for Violence Video Classification using VSD2014 Dataset -- Chapter 6: Header Based Email Spam Detection Framework Using Support Vector Machine (SVM) Technique -- Chapter 7: A Mechanism to Support Agile Frameworks Enhancing Reliability Assessment for SCS Development: A Case Study of Medical Surgery Departments -- Chapter 8: Link Bandwidth Recommendation for Indonesian E-Health Grid -- Chapter 9: Investigating the Optimal Parameterization of Deep Neural Network and Synthetic DataWorkflow for Imbalance Liver Disorder Dataset Classification -- Chapter 10: Genetic Algorithm Based Parallel K-Means Data Clustering Algorithm Using MapReduce Programming Paradigm on Hadoop Environment (GAPKCA) -- Chapter 11: Android Botnet Detection by Classification Techniques. 
520 |a This book provides an introduction to data science and offers a practical overview of the concepts and techniques that readers need to get the most out of their large-scale data mining projects and research studies. It discusses data-analytical thinking, which is essential to extract useful knowledge and obtain commercial value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad interdisciplinary range of scientific methods and processes. The book provides readers with sufficient knowledge to tackle a wide range of issues in complex systems, bringing together the scopes that integrate soft computing and data mining in various combinations of applications and practices, since to thrive in these data-driven ecosystems, researchers, data analysts and practitioners must understand the design choice and options of these approaches. This book helps readers to solve complex benchmark problems and to better appreciate the concepts, tools and techniques used. 
650 0 |a Computational intelligence. 
650 0 |a Engineering  |x Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Data Engineering. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Ghazali, Rozaida.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Nawi, Nazri Mohd.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Deris, Mustafa Mat.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Abawajy, Jemal H.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030360559 
776 0 8 |i Printed edition:  |z 9783030360573 
830 0 |a Advances in Intelligent Systems and Computing,  |x 2194-5365 ;  |v 978 
856 4 0 |u https://doi.org/10.1007/978-3-030-36056-6 
912 |a ZDB-2-INR 
912 |a ZDB-2-SXIT 
950 |a Intelligent Technologies and Robotics (SpringerNature-42732) 
950 |a Intelligent Technologies and Robotics (R0) (SpringerNature-43728)