Cancer Bioinformatics

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Krasnitz, Alexander (Editor)
Summary:X, 280 p. 89 illus., 64 illus. in color.
text
Language:English
Published: New York, NY : Springer New York : Imprint: Humana, 2019.
Edition:1st ed. 2019.
Series:Methods in Molecular Biology, 1878
Subjects:
Online Access:https://doi.org/10.1007/978-1-4939-8868-6
Format: Electronic Book

MARC

LEADER 00000nam a22000005i 4500
001 978-1-4939-8868-6
003 DE-He213
005 20240322053607.0
007 cr nn 008mamaa
008 181030s2019 xxu| s |||| 0|eng d
020 |a 9781493988686  |9 978-1-4939-8868-6 
024 7 |a 10.1007/978-1-4939-8868-6  |2 doi 
050 4 |a RC261-271 
072 7 |a MJCL  |2 bicssc 
072 7 |a MED062000  |2 bisacsh 
072 7 |a MJCL  |2 thema 
082 0 4 |a 571.978  |2 23 
082 0 4 |a 616.994  |2 23 
245 1 0 |a Cancer Bioinformatics  |h [electronic resource] /  |c edited by Alexander Krasnitz. 
250 |a 1st ed. 2019. 
264 1 |a New York, NY :  |b Springer New York :  |b Imprint: Humana,  |c 2019. 
300 |a X, 280 p. 89 illus., 64 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Methods in Molecular Biology,  |x 1940-6029 ;  |v 1878 
505 0 |a An Access Primer to Repositories of Cancer-related Genomic Big Data -- Building Portable and Reproducible Cancer Informatics Workflows: An RNA Sequencing Case Study -- Computational Analysis of Structural Variation in Cancer Genomes -- CORE: A Software Tool for Delineating Regions of Recurrent DNA Copy Number Alteration in Cancer -- Identification of Mutated Cancer Driver Genes on Unpaired RNA-Seq Samples -- A Computational Protocol for Detecting Somatic Mutations by Integrating DNA and RNA Sequencing -- Allele-specific Expression Analysis in Cancer Using Next Generation Sequencing Data -- Computational Analysis of lncRNA Function in Cancer -- Computational Methods for Identification of T Cell Neoepitopes in Tumors -- Computational and Statistical Analysis of Array-based DNA Methylation Data -- Computational Methods for Subtyping Of Tumors and their Applications for Deciphering Tumor Heterogeneity -- Statistically Supported Identification of Tumor Subtypes -- Computational Methods for Analysisof Tumor Clonality and Evolutionary History -- Predictive Modeling of Anti-cancer Drug Sensitivity from Genetic Characterizations -- In silico Oncology Drug Repositioning and Polypharmacology -- Modelling Growth of Tumours and their Spreading Behaviour using Mathematical Functions. 
520 |a This volume covers a wide variety of state of the art cancer-related methods and tools for data analysis and interpretation. Chapters were designed to attract a broad readership, ranging from active researchers in computational biology and bioinformatics developers, clinical oncologists, and anti-cancer drug developers wishing to rationalize their search for new compounds. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, installation instructions for computational tools discussed, explanations of the input and output formats, and illustrative examples of applications. Authoritative and cutting-edge, Cancer Bioinformatics: Methods and Protocols aims to support researchers performing computational analysis of cancer-related data. 
650 0 |a Cancer. 
650 1 4 |a Cancer Biology. 
700 1 |a Krasnitz, Alexander.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781493988662 
776 0 8 |i Printed edition:  |z 9781493988679 
776 0 8 |i Printed edition:  |z 9781493994045 
830 0 |a Methods in Molecular Biology,  |x 1940-6029 ;  |v 1878 
856 4 0 |u https://doi.org/10.1007/978-1-4939-8868-6 
912 |a ZDB-2-PRO 
950 |a Springer Protocols (Springer-12345)