Лекции по математическому анализу. Ч.2, учебное пособие
| Источник: | Лекции по математическому анализу. / Дубровин В. Т.. Ч. 2 |
|---|---|
| Главный автор: | |
| Примечания: | В предлагаемом учебном пособии излагается теория числовых рядов, функциональных последовательностей и рядов, дифференциальнаного исчисления функций многих переменных. Темы, связанные с вычислением, сопровождаются набором решенных задач. Книга из коллекции КФУ - Математика |
| Опубликовано: |
Казань, КФУ, 2016
|
| Предметы: | |
| Online-ссылка: | http://e.lanbook.com/books/element.php?pl1_id=73544 https://e.lanbook.com/img/cover/book/73544.jpg |
| Формат: | Электронный ресурс Книга |
MARC
| LEADER | 00000nam0a2200000 i 4500 | ||
|---|---|---|---|
| 001 | 73544 | ||
| 010 | |a 978-5-00019-575-8 | ||
| 100 | |a 20250516d2016 k y0rusy01020304ca | ||
| 101 | 0 | |a rus | |
| 102 | |a RU | ||
| 105 | |a y j 000zy | ||
| 106 | |a z | ||
| 200 | 1 | |a Лекции по математическому анализу. Ч.2 |f Дубровин В. Т. |e учебное пособие |h Ч. 2 | |
| 210 | |a Казань |b Казань |c КФУ |d 2016 | ||
| 215 | |a 140 с. | ||
| 330 | |a В предлагаемом учебном пособии излагается теория числовых рядов, функциональных последовательностей и рядов, дифференциальнаного исчисления функций многих переменных. Темы, связанные с вычислением, сопровождаются набором решенных задач. | ||
| 333 | |a Книга из коллекции КФУ - Математика | ||
| 461 | 0 | |1 2001 |a Лекции по математическому анализу |f Дубровин В. Т. |v Ч. 2 | |
| 610 | 0 | |a числовые ряды | |
| 610 | 0 | |a функциональные последовательности | |
| 610 | 0 | |a функциональные ряды | |
| 610 | 0 | |a необходимые и достаточные признаки сходимости | |
| 610 | 0 | |a достаточные признаки сходимости | |
| 610 | 0 | |a условно сходящиеся ряды | |
| 610 | 0 | |a двойные ряды | |
| 610 | 0 | |a примеры | |
| 610 | 0 | |a область сходимости | |
| 610 | 0 | |a равномерная сходимость | |
| 610 | 0 | |a критерий коши | |
| 610 | 0 | |a векторное n-мерное пространство | |
| 610 | 0 | |a дифференциальное исчисление функций многих переменных | |
| 610 | 0 | |a n-мерное пространство | |
| 610 | 0 | |a топология евклидова пространства | |
| 610 | 0 | |a расширенное евклидово пространство | |
| 610 | 0 | |a компактные множества | |
| 610 | 0 | |a теорема вейерштрасса | |
| 610 | 0 | |a отображения в евклидовом пространстве | |
| 610 | 0 | |a непрерывные функции | |
| 610 | 0 | |a производная вектор-функции | |
| 610 | 0 | |a дифференцирование функций многих переменных | |
| 610 | 0 | |a касательная плоскость | |
| 610 | 0 | |a дифференцирование сложной функции | |
| 610 | 0 | |a формула конечных приращений | |
| 610 | 0 | |a инвариантность формы дифференциала первого порядка | |
| 610 | 0 | |a частные производные высших порядков | |
| 610 | 0 | |a дифференциалы высших порядков | |
| 610 | 0 | |a дифференциалы сложной функции | |
| 610 | 0 | |a формулы тейлора | |
| 610 | 0 | |a существование и дифференцирование неявно заданной функции | |
| 610 | 0 | |a неявные функции | |
| 610 | 0 | |a условный экстремум | |
| 675 | |a 517.5 | ||
| 686 | |a 22.16 |2 rubbk | ||
| 700 | 1 | |a Дубровин |b В. Т. | |
| 801 | 1 | |a RU |b Издательство Лань |c 20250516 |g RCR | |
| 856 | 4 | |u http://e.lanbook.com/books/element.php?pl1_id=73544 | |
| 856 | 4 | 1 | |u https://e.lanbook.com/img/cover/book/73544.jpg |
| 953 | |a https://e.lanbook.com/img/cover/book/73544.jpg | ||