Mechanochemical synthesis of strontium- and magnesium-substituted and cosubstituted hydroxyapatite powders for a variety of biomedical applications

Մատենագիտական մանրամասներ
Parent link:Ceramics International.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 48, iss. 23, Pt. A.— 2022.— P. 35217-35226
Այլ հեղինակներ: Bulina N. V. Natalia, Vinokurova O. B. Olga, Prosanov Igor I. Yu., Vorobjev A. M. Aleksandr, Gerasimov K. B. Konstantin, Borodulina I. A., Pryadko A. Artyom, Botvin V. V. Vladimir Viktorovich, Surmeneva M. A. Maria Alexandrovna, Surmenev R. A. Roman Anatolievich
Ամփոփում:Title screen
Hydroxyapatite (HA) is a biocompatible material widely used in various biomedical applications. Stoichiometric HA has low bioactivity and does not possess antibacterial properties. One way to modify HA properties is to substitute some ions in stoichiometric HA, i.e., to dope HA, for attaining desired properties, e.g., improved bioactivity or an antibacterial effect. This work shows that a soft mechanochemical method of HA synthesis allows to obtain bioactive HA containing strontium ions, magnesium ions, or both. Substituted HAs with substitution degree x(Mg) = 0.5 mol or x(Sr) = 1.5 mol were synthesized, as was cosubstituted HAs contained both magnesium and strontium ions with x(Mg) = 0.5 mol or x(Sr) = 1.5 mol. The resulting materials were investigated by simultaneous thermal analysis, scanning electron microscopy, granulometry, powder X-ray diffraction, Fourier transform infrared, Raman spectroscopy, and X-ray photoelectron spectroscopy. Thermal stability of the obtained materials was studied too. The partial calcium substitution with strontium and/or magnesium changed both HA crystal lattice parameters and positions of absorption bands of phosphate groups in Fourier transform infrared and Raman spectra. X-ray photoelectron spectra of the synthesized materials contain peaks of all elements with binding energies corresponding to substituted HA. The strontium substitution, unlike the magnesium substitution, did not reduce HA thermal stability. The crystal lattice of Sr-substituted HA is stable up to 1300 °C, just as stoichiometric HA. Magnesium cations left HA at 800 °C, forming Mg-substituted β-Ca3(PO4)2. At the cosubstitution, thermal stability of HA became slightly lower. Partial decomposition of the material began already at 700 °C. Accordingly, during manufacturing of medical devices from the proposed materials, their low thermal stability should be taken into account. To preserve the structure of Mg-Sr-cosubstituted HA, heat treatment conditions should not exceed 700 °C
Текстовый файл
AM_Agreement
Լեզու:անգլերեն
Հրապարակվել է: 2022
Խորագրեր:
Առցանց հասանելիություն:https://doi.org/10.1016/j.ceramint.2022.08.123
Ձևաչափ: Էլեկտրոնային Գրքի գլուխ
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=684756

MARC

LEADER 00000naa0a2200000 4500
001 684756
005 20260209152148.0
090 |a 684756 
100 |a 20260209d2022 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Mechanochemical synthesis of strontium- and magnesium-substituted and cosubstituted hydroxyapatite powders for a variety of biomedical applications  |f N. V. Bulina, O. B. Vinokurova, I. Y. Prosanov [et al.] 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 58 tit 
330 |a Hydroxyapatite (HA) is a biocompatible material widely used in various biomedical applications. Stoichiometric HA has low bioactivity and does not possess antibacterial properties. One way to modify HA properties is to substitute some ions in stoichiometric HA, i.e., to dope HA, for attaining desired properties, e.g., improved bioactivity or an antibacterial effect. This work shows that a soft mechanochemical method of HA synthesis allows to obtain bioactive HA containing strontium ions, magnesium ions, or both. Substituted HAs with substitution degree x(Mg) = 0.5 mol or x(Sr) = 1.5 mol were synthesized, as was cosubstituted HAs contained both magnesium and strontium ions with x(Mg) = 0.5 mol or x(Sr) = 1.5 mol. The resulting materials were investigated by simultaneous thermal analysis, scanning electron microscopy, granulometry, powder X-ray diffraction, Fourier transform infrared, Raman spectroscopy, and X-ray photoelectron spectroscopy. Thermal stability of the obtained materials was studied too. The partial calcium substitution with strontium and/or magnesium changed both HA crystal lattice parameters and positions of absorption bands of phosphate groups in Fourier transform infrared and Raman spectra. X-ray photoelectron spectra of the synthesized materials contain peaks of all elements with binding energies corresponding to substituted HA. The strontium substitution, unlike the magnesium substitution, did not reduce HA thermal stability. The crystal lattice of Sr-substituted HA is stable up to 1300 °C, just as stoichiometric HA. Magnesium cations left HA at 800 °C, forming Mg-substituted β-Ca3(PO4)2. At the cosubstitution, thermal stability of HA became slightly lower. Partial decomposition of the material began already at 700 °C. Accordingly, during manufacturing of medical devices from the proposed materials, their low thermal stability should be taken into account. To preserve the structure of Mg-Sr-cosubstituted HA, heat treatment conditions should not exceed 700 °C 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Ceramics International  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 48, iss. 23, Pt. A  |v P. 35217-35226  |d 2022 
610 1 |a Mechanochemical synthesis 
610 1 |a Hydroxyapatite 
610 1 |a Strontium 
610 1 |a Magnesium 
610 1 |a Substitution 
610 1 |a Doping 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Bulina  |b N. V.  |g Natalia 
701 1 |a Vinokurova  |b O. B.  |g Olga 
701 1 |a Prosanov  |b Igor  |g I. Yu. 
701 1 |a Vorobjev  |b A. M.  |g Aleksandr 
701 1 |a Gerasimov  |b K. B.  |g Konstantin 
701 1 |a Borodulina  |b I. A. 
701 1 |a Pryadko  |b A.  |c Specialist in the field of nuclear technologies  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Artyom  |9 22547 
701 1 |a Botvin  |b V. V.  |c chemist  |c Senior Researcher of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1991-  |g Vladimir Viktorovich  |9 22791 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |9 15966 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |9 15957 
801 0 |a RU  |b 63413507  |c 20260209  |g RCR 
850 |a 63413507 
856 4 0 |u https://doi.org/10.1016/j.ceramint.2022.08.123  |z https://doi.org/10.1016/j.ceramint.2022.08.123 
942 |c CF