Clay minerals in methane seep sediments of the Laptev Sea (Arctic): diagenetic transformations and buffering functions

Bibliographische Detailangaben
Parent link:Applied Clay Science.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 282.— 2026.— Article number 108092, 12 p.
Weitere Verfasser: Rudmin M. A. Maksim Andreevich, Ruban A. S. Aleksey Sergeevich, Deeva E. S. Elena Sergeevna, Khitrin I. S. Ivan Sergeevich
Zusammenfassung:Title screen
This study first investigates diagenetic transformations and buffering functions of clay minerals in methane seep sediments from the Laptev Sea shelf (Arctic Ocean). Compared to background sediments, the seep-associated clays show enrichment in smectite content (up to 5.8 % vs. 0.8 %), attributed to reverse weathering, authigenic formation, and stabilization of smectite phases under reducing conditions. Illite group minerals in seep samples exhibit higher crystallinity and elevated Fe and Mg content in the octahedral sheets, likely reflecting the microbially mediated reduction of structural Fe3+. Chlorite is reduced by 2–6 wt% in seep sediments, reflecting partial dissolution and Fe2+ transfer into authigenic Fe-rich smectite. Submicron-sized pyrite crystals were detected on clay surfaces, indicating active sulfide diagenesis. TG-DCS-MS analyses revealed the unique buffering behavior of these clay minerals, as evidenced by their ability to sorb and release methane, water, CO2, and sulfur-bearing gases. The release of methane above 400 °C directly indicates its physicochemical association with the clay matrix. The sustained NO+ emission (m/z = 30) above 700 °C is proposed as a novel diagnostic signal of seep-related diagenetic alteration. This is the first detailed characterization of diagenetic clay transformations in Arctic methane seep environments. These findings demonstrate that clay minerals in Arctic seep environments act as mineralogical proxies of the mobility of hydrocarbon gases. Their compositional and structural modifications provide critical insights into methane cycling and diagenetic pathways in Arctic marine sediments. The results promise to refine reconstructions of fluid migration history and the geochemical evolution of sedimentary basins influenced by methane seepage
Текстовый файл
AM_Agreement
Veröffentlicht: 2026
Schlagworte:
Online-Zugang:https://doi.org/10.1016/j.clay.2025.108092
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=684387

MARC

LEADER 00000naa0a2200000 4500
001 684387
005 20260122152617.0
090 |a 684387 
100 |a 20260122a2026 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Clay minerals in methane seep sediments of the Laptev Sea (Arctic): diagenetic transformations and buffering functions  |f Maxim Rudmin, Alexey Ruban, Elena Deeva, Ivan Khitrin 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
330 |a This study first investigates diagenetic transformations and buffering functions of clay minerals in methane seep sediments from the Laptev Sea shelf (Arctic Ocean). Compared to background sediments, the seep-associated clays show enrichment in smectite content (up to 5.8 % vs. 0.8 %), attributed to reverse weathering, authigenic formation, and stabilization of smectite phases under reducing conditions. Illite group minerals in seep samples exhibit higher crystallinity and elevated Fe and Mg content in the octahedral sheets, likely reflecting the microbially mediated reduction of structural Fe3+. Chlorite is reduced by 2–6 wt% in seep sediments, reflecting partial dissolution and Fe2+ transfer into authigenic Fe-rich smectite. Submicron-sized pyrite crystals were detected on clay surfaces, indicating active sulfide diagenesis. TG-DCS-MS analyses revealed the unique buffering behavior of these clay minerals, as evidenced by their ability to sorb and release methane, water, CO2, and sulfur-bearing gases. The release of methane above 400 °C directly indicates its physicochemical association with the clay matrix. The sustained NO+ emission (m/z = 30) above 700 °C is proposed as a novel diagnostic signal of seep-related diagenetic alteration. This is the first detailed characterization of diagenetic clay transformations in Arctic methane seep environments. These findings demonstrate that clay minerals in Arctic seep environments act as mineralogical proxies of the mobility of hydrocarbon gases. Their compositional and structural modifications provide critical insights into methane cycling and diagenetic pathways in Arctic marine sediments. The results promise to refine reconstructions of fluid migration history and the geochemical evolution of sedimentary basins influenced by methane seepage 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Applied Clay Science  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 282  |v Article number 108092, 12 p.  |d 2026 
610 1 |a Clay minerals 
610 1 |a Methane seeps 
610 1 |a Reverse weathering 
610 1 |a Diagenesis 
610 1 |a Buffer characteristics 
610 1 |a Arctic 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Rudmin  |b M. A.  |c geologist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Geological and Mineralogical Sciences  |f 1989-  |g Maksim Andreevich  |9 16999 
701 1 |a Ruban  |b A. S.  |c geologist  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Aleksey Sergeevich  |9 17590 
701 1 |a Deeva  |b E. S.  |g Elena Sergeevna  |f 1991-  |c geologist  |c Research Engineer of Tomsk Polytechnic University, Candidate of geological and mineralogical sciences  |9 88875 
701 1 |a Khitrin  |b I. S.  |g Ivan Sergeevich  |f 2002-  |c geologist  |c engineer of Tomsk Polytechnic University  |9 89103 
801 0 |a RU  |b 63413507  |c 20260122  |g RCR 
856 4 |u https://doi.org/10.1016/j.clay.2025.108092  |z https://doi.org/10.1016/j.clay.2025.108092 
942 |c CF