Nanoscale Nickel–Chromium Powder as a Catalyst in Reducing the Temperature of Hydrogen Desorption from Magnesium Hydride

Bibliografiska uppgifter
Parent link:Hydrogen.— .— Basel: MDPI AG
Vol. 6, iss. 4.— 2025.— Article number 123, 24 p.
Övriga upphovsmän: Kenzhiyev A. Alan, Kudiyarov V. N. Victor Nikolaevich, Spiridonova A. A. Alena Aleksandrovna, Terentjeva D. V. Darjya Vitaljevna, Vrublevsky D. B. Dmitry Borisovich, Svyatkin L. A. Leonid Aleksandrovich, Nikitin D. S. Dmitry Sergeevich, Kashkarov E. B. Egor Borisovich
Sammanfattning:Title screen
The composite material MgH2-EEWNi-Cr (20 wt. %) with a hydrogen content of 5.2 ± 0.1 wt.% is characterized by improved hydrogen interaction properties compared to the original MgH2. The dissociation of the material occurs in three temperature ranges (86–117, 152–162, and 281–351 °C), associated with a complex of effects consisting of changes in the specific surface area of the material, alterations in the crystal lattice during ball milling, and changes in the electronic structure in the presence of a Ni–Cr catalyst, based on first-principles calculations. The decrease in desorption activation energy (Ed = 65–96 ± 1 kJ/mol, ΔEd = 59–90 kJ/mol) is due to the catalytic effect of N–Cr, leading to a faster decomposition of the hydride phase. Based on the results of ab initio calculations, Ni–Cr on the MgH2 surface leads to a significant decrease in hydrogen binding energy (ΔEb = 60%) compared to pure magnesium hydride due to the formation of Ni–H and Cr–H covalent bonds, which reduces the degree of H–Mg ionic bonding. The results obtained allow us to expand our understanding of the mechanisms of hydrogen interaction with storage materials and the possibility of using these as mobile hydrogen storage and transportation materials
Текстовый файл
Språk:engelska
Publicerad: 2025
Ämnen:
Länkar:https://doi.org/10.3390/hydrogen6040123
Materialtyp: Elektronisk Bokavsnitt
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=684099

MARC

LEADER 00000naa0a2200000 4500
001 684099
005 20251225090110.0
090 |a 684099 
100 |a 20251225d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Nanoscale Nickel–Chromium Powder as a Catalyst in Reducing the Temperature of Hydrogen Desorption from Magnesium Hydride  |f Alan Kenzhiyev, Viktor N. Kudiiarov, Alena A. Spiridonova [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 61 tit 
330 |a The composite material MgH2-EEWNi-Cr (20 wt. %) with a hydrogen content of 5.2 ± 0.1 wt.% is characterized by improved hydrogen interaction properties compared to the original MgH2. The dissociation of the material occurs in three temperature ranges (86–117, 152–162, and 281–351 °C), associated with a complex of effects consisting of changes in the specific surface area of the material, alterations in the crystal lattice during ball milling, and changes in the electronic structure in the presence of a Ni–Cr catalyst, based on first-principles calculations. The decrease in desorption activation energy (Ed = 65–96 ± 1 kJ/mol, ΔEd = 59–90 kJ/mol) is due to the catalytic effect of N–Cr, leading to a faster decomposition of the hydride phase. Based on the results of ab initio calculations, Ni–Cr on the MgH2 surface leads to a significant decrease in hydrogen binding energy (ΔEb = 60%) compared to pure magnesium hydride due to the formation of Ni–H and Cr–H covalent bonds, which reduces the degree of H–Mg ionic bonding. The results obtained allow us to expand our understanding of the mechanisms of hydrogen interaction with storage materials and the possibility of using these as mobile hydrogen storage and transportation materials 
336 |a Текстовый файл 
461 1 |t Hydrogen  |c Basel  |n MDPI AG 
463 1 |t Vol. 6, iss. 4  |v Article number 123, 24 p.  |d 2025 
610 1 |a hydrogen storage material 
610 1 |a magnesium 
610 1 |a nickel 
610 1 |a chromium 
610 1 |a electrical explosion of wires 
610 1 |a ab initio 
610 1 |a DFT 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Kenzhiyev  |b A.  |c physicist  |c Engineer of Tomsk Polytechnic University  |f 2001-  |g Alan  |9 88850 
701 1 |a Kudiyarov  |b V. N.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Victor Nikolaevich  |9 15083 
701 1 |a Spiridonova  |b A. A.  |g Alena Aleksandrovna 
701 1 |a Terentjeva  |b D. V.  |c physicist  |c Engineer of Tomsk Polytechnic University  |f 1999-  |g Darjya Vitaljevna  |9 88521 
701 1 |a Vrublevsky  |b D. B.  |g Dmitry Borisovich 
701 1 |a Svyatkin  |b L. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1988-  |g Leonid Aleksandrovich  |9 17747 
701 1 |a Nikitin  |b D. S.  |c specialist in the field of electric power engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1991-  |g Dmitry Sergeevich  |9 18802 
701 1 |a Kashkarov  |b E. B.  |c Physicist  |c Associate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1991-  |g Egor Borisovich  |9 18267 
801 0 |a RU  |b 63413507  |c 20251225 
850 |a 63413507 
856 4 |u https://doi.org/10.3390/hydrogen6040123  |z https://doi.org/10.3390/hydrogen6040123 
942 |c CF