Adaptive Iterative Algorithm for Optimizing the Load Profile of Charging Stations with Restrictions on the State of Charge of the Battery of Mining Dump Trucks

מידע ביבליוגרפי
Parent link:Mathematics.— .— Basel: MDPI AG
Vol. 13, iss. 24.— 2025.— Article number 3964, 13 p.
מחברים אחרים: Martyushev N. V. Nikita Vladimirovich, Malozemov B. V. Boris Vitaljevich, Gladkikh V. A. Vitaly Aleksandrovich, Demin A. Yu. Anton Yurievich, Pogrebnoy A. V. Aleksandr Vladimirovich, Kuleshova E. E. Elizaveta Evgenjevna, Karlina Yu. I. Yuliya Igorevna
סיכום:The development of electric quarry transport puts a significant strain on local power grids, leading to sharp peaks in consumption and degradation of power quality. Existing methods of peak smoothing, such as generation control, virtual power plants, or intelligent load management, have limited efficiency under the conditions of stochastic and high-power load profiles of industrial charging stations. A new strategy for direct charge and discharge management of a system for integrated battery energy storage (IBES) is based on dynamic iterative adjustment of load boundaries. The mathematical apparatus of the method includes the formalization of an optimization problem with constraints, which is solved using a nonlinear iterative filter with feedback. The key elements are adaptive algorithms that minimize the network power dispersion functionality (i.e., the variance of over the considered time interval) while respecting the constraints on the state of charge (SOC) and battery power. Numerical simulations and experimental studies demonstrate a 15 to 30% reduction in power dispersion compared to traditional constant power control methods. The results confirm the effectiveness of the proposed approach for optimizing energy consumption and increasing the stability of local power grids of quarry enterprises
Текстовый файл
שפה:אנגלית
יצא לאור: 2025
נושאים:
גישה מקוונת:https://doi.org/10.3390/math13243964
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=683769

MARC

LEADER 00000naa0a2200000 4500
001 683769
005 20251217143448.0
090 |a 683769 
100 |a 20251217d2025 k||y0rusy50 ca 
101 1 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Adaptive Iterative Algorithm for Optimizing the Load Profile of Charging Stations with Restrictions on the State of Charge of the Battery of Mining Dump Trucks  |f Nikita V. Martyushev, Boris V. Malozyomov, Vitaliy A. Gladkikh [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
320 |a References: 54 tit 
330 |a The development of electric quarry transport puts a significant strain on local power grids, leading to sharp peaks in consumption and degradation of power quality. Existing methods of peak smoothing, such as generation control, virtual power plants, or intelligent load management, have limited efficiency under the conditions of stochastic and high-power load profiles of industrial charging stations. A new strategy for direct charge and discharge management of a system for integrated battery energy storage (IBES) is based on dynamic iterative adjustment of load boundaries. The mathematical apparatus of the method includes the formalization of an optimization problem with constraints, which is solved using a nonlinear iterative filter with feedback. The key elements are adaptive algorithms that minimize the network power dispersion functionality (i.e., the variance of over the considered time interval) while respecting the constraints on the state of charge (SOC) and battery power. Numerical simulations and experimental studies demonstrate a 15 to 30% reduction in power dispersion compared to traditional constant power control methods. The results confirm the effectiveness of the proposed approach for optimizing energy consumption and increasing the stability of local power grids of quarry enterprises 
336 |a Текстовый файл 
461 1 |t Mathematics  |c Basel  |n MDPI AG 
463 1 |t Vol. 13, iss. 24  |v Article number 3964, 13 p.  |d 2025 
610 1 |a optimal control 
610 1 |a mathematical modeling 
610 1 |a load peak smoothing 
610 1 |a integrated battery energy storage system 
610 1 |a dynamic optimization 
610 1 |a iterative algorithms 
610 1 |a nonlinear filterin 
610 1 |a constrained problem 
610 1 |a real-time control 
610 1 |a adaptive systems 
610 1 |a numerical method 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
701 1 |a Martyushev  |b N. V.  |c specialist in the field of material science  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1981-  |g Nikita Vladimirovich  |9 16754 
701 1 |a Malozemov  |b B. V.  |g Boris Vitaljevich 
701 1 |a Gladkikh  |b V. A.  |g Vitaly Aleksandrovich 
701 1 |a Demin  |b A. Yu.  |c specialist in the field of Informatics and computer engineering  |c Associate Professor of Tomsk Polytechnic University, candidate of technical sciences  |f 1973-  |g Anton Yurievich  |9 17327 
701 1 |a Pogrebnoy  |b A. V.  |c specialist in the field of Informatics and computer engineering  |c Associate Professor of Tomsk Polytechnic University, candidate of technical sciences  |f 1973-  |g Aleksandr Vladimirovich  |9 17310 
701 1 |a Kuleshova  |b E. E.  |g Elizaveta Evgenjevna 
701 1 |a Karlina  |b Yu. I.  |g Yuliya Igorevna 
801 0 |a RU  |b 63413507  |c 20251217 
850 |a 63413507 
856 4 |u https://doi.org/10.3390/math13243964  |z https://doi.org/10.3390/math13243964 
942 |c CF