Effect of Hydrogen on Grain Boundary Diffusion of Chromium in Zr–1 wt % Nb Alloy

書誌詳細
Parent link:Physics of Metals and Metallography.— .— New York: Springer Science+Business Media LLC.
Vol. 126, iss. 3.— 2025.— P. 280-287
その他の著者: Grabovskaya G. P. Galina Petrovna, Stepanova E. N. Ekaterina Nikolaevna, Kruglyakov M. A. Mark Aleksandrovich, Manisheva A. I. Anna Ildarovna
要約:Title screen
Comparative studies of chromium grain boundary diffusion in the near-surface layer of Zr–1Nb and Zr–1Nb–0.14Н polycrystalline alloys were conducted at isothermal diffusion annealing and irradiation of the surface with a pulsed electron beam (PEB) in the temperature range of 573–723 K. The optical emission spectrometry of high-frequency glow discharge was used to determine the distribution profiles of chromium concentration by depth in the near-surface layer of the studied alloys. The grain boundary diffusion parameter of chromium Pb = δsDb (δ is the grain boundary width; s is the segregation coefficient; and Db is the grain boundary diffusion coefficient) in the near-surface layer of Zr–1Nb and Zr–1Nb–0.14Н alloys was estimated based on the Whipple−Le Claire equation. It is revealed that at simultaneous exposure to temperature and PEB irradiation, the Pb parameter increases, while the activation energy of grain boundary diffusion of chromium in the near-surface layer of the Zr–1Nb alloy decreases. The presence of hydrogen in the Zr‒1Nb–0.14Н alloy results in a reduction of the Pb parameter and a rise in the activation energy of grain boundary diffusion of chromium
Текстовый файл
AM_Agreement
言語:英語
出版事項: 2025
主題:
オンライン・アクセス:https://doi.org/10.1134/S0031918X24602968
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=683582

MARC

LEADER 00000naa0a2200000 4500
001 683582
005 20251202163548.0
090 |a 683582 
100 |a 20251202d2025 k||y0engy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Effect of Hydrogen on Grain Boundary Diffusion of Chromium in Zr–1 wt % Nb Alloy  |f G. P. Grabovetskaya, E. N. Stepanova, M. A. Kruglyakov, A. I. Manisheva 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 28 tit 
330 |a Comparative studies of chromium grain boundary diffusion in the near-surface layer of Zr–1Nb and Zr–1Nb–0.14Н polycrystalline alloys were conducted at isothermal diffusion annealing and irradiation of the surface with a pulsed electron beam (PEB) in the temperature range of 573–723 K. The optical emission spectrometry of high-frequency glow discharge was used to determine the distribution profiles of chromium concentration by depth in the near-surface layer of the studied alloys. The grain boundary diffusion parameter of chromium Pb = δsDb (δ is the grain boundary width; s is the segregation coefficient; and Db is the grain boundary diffusion coefficient) in the near-surface layer of Zr–1Nb and Zr–1Nb–0.14Н alloys was estimated based on the Whipple−Le Claire equation. It is revealed that at simultaneous exposure to temperature and PEB irradiation, the Pb parameter increases, while the activation energy of grain boundary diffusion of chromium in the near-surface layer of the Zr–1Nb alloy decreases. The presence of hydrogen in the Zr‒1Nb–0.14Н alloy results in a reduction of the Pb parameter and a rise in the activation energy of grain boundary diffusion of chromium 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Physics of Metals and Metallography  |c New York  |n Springer Science+Business Media LLC. 
463 1 |t Vol. 126, iss. 3  |v P. 280-287  |d 2025 
610 1 |a zirconium alloy 
610 1 |a hydrogen 
610 1 |a chromium 
610 1 |a diffusion 
610 1 |a isothermal diffusion annealing 
610 1 |a pulsed electron beam 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Grabovskaya  |b G. P.  |g Galina Petrovna 
701 1 |a Stepanova  |b E. N.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1981-  |g Ekaterina Nikolaevna  |9 18329 
701 1 |a Kruglyakov  |b M. A.  |c physicist  |c Engineer of Tomsk Polytechnic University  |f 1997-  |g Mark Aleksandrovich  |9 88530 
701 1 |a Manisheva  |b A. I.  |g Anna Ildarovna 
801 2 |a RU  |b 63413507  |c 20250212  |g RCR 
856 4 0 |u https://doi.org/10.1134/S0031918X24602968  |z https://doi.org/10.1134/S0031918X24602968 
942 |c CF