Energy-Based Surface Classification for Mobile Robots in Known and Unexplored Terrains

Dettagli Bibliografici
Parent link:Robotics.— .— Basel: MDPI AG
Vol. 14, iss. 9.— 2025.— Article number 130, 17 p.
Autore principale: Belyaev A. S. Aleksandr Sergeevich
Altri autori: Kushnarev O. Yu. Oleg Yurjevich
Riassunto:Title screen
Mobile robot navigation in diverse environments is challenging due to varying terrain properties. Underlying surface classification improves robot control and navigation in such conditions. This paper presents an adaptive surface classification system using proprioceptive energy consumption data. We introduce an energy coefficient, calculated from motor current and velocity, to quantify motion effort. This coefficient’s dependency on motion direction is modeled for known surface types using discrete cosine transform. A probabilistic classifier, enhanced with memory, compares real-time coefficient values against these models to identify known surfaces. A neural network-based detector identifies encounters with previously unknown terrains by recognizing significant deviations from known models. Upon detection, a least squares method identifies the new surface’s model parameters using data gathered from specific motion directions. Experimental results validate the approach, demonstrating high classification accuracy for known surfaces (91%) and robust detection (96.2%) and identification (MAPE < 3%) of unknown surfaces
Текстовый файл
Lingua:inglese
Pubblicazione: 2025
Soggetti:
Accesso online:https://doi.org/10.3390/robotics14090130
Natura: Elettronico Capitolo di libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=681980

MARC

LEADER 00000naa0a2200000 4500
001 681980
005 20250929133045.0
090 |a 681980 
100 |a 20250929d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Energy-Based Surface Classification for Mobile Robots in Known and Unexplored Terrains  |f Alexander Belyaev, Oleg Kushnarev 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 32 tit 
330 |a Mobile robot navigation in diverse environments is challenging due to varying terrain properties. Underlying surface classification improves robot control and navigation in such conditions. This paper presents an adaptive surface classification system using proprioceptive energy consumption data. We introduce an energy coefficient, calculated from motor current and velocity, to quantify motion effort. This coefficient’s dependency on motion direction is modeled for known surface types using discrete cosine transform. A probabilistic classifier, enhanced with memory, compares real-time coefficient values against these models to identify known surfaces. A neural network-based detector identifies encounters with previously unknown terrains by recognizing significant deviations from known models. Upon detection, a least squares method identifies the new surface’s model parameters using data gathered from specific motion directions. Experimental results validate the approach, demonstrating high classification accuracy for known surfaces (91%) and robust detection (96.2%) and identification (MAPE < 3%) of unknown surfaces 
336 |a Текстовый файл 
461 1 |t Robotics  |c Basel  |n MDPI AG 
463 1 |t Vol. 14, iss. 9  |v Article number 130, 17 p.  |d 2025 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a AI-based methods 
610 1 |a energy consumption 
610 1 |a mobile robots 
610 1 |a proprioception 
610 1 |a surface classification 
700 1 |a Belyaev  |b A. S.  |c Specialist in the field of informatics and computer technology  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1994-  |g Aleksandr Sergeevich  |9 20707 
701 1 |a Kushnarev  |b O. Yu.  |g Oleg Yurjevich 
801 0 |a RU  |b 63413507  |c 20250929 
850 |a 63413507 
856 4 |u https://doi.org/10.3390/robotics14090130  |z https://doi.org/10.3390/robotics14090130 
942 |c CF