Elastic and Compressive Barium Aluminosilicate Nanofibrous Sponge for Thermal Insulation up to 1400 °C

Bibliographic Details
Parent link:ACS Applied Nano Materials.— .— Washington: American Chemical Society
Vol. 8, iss. 19.— 2025.— P. 9995-10003
Other Authors: Hangyuan Guo, Hualei Liu, Lingqiao Wei, Songchun Fang, Surmenev R. A. Roman Anatolievich, Yi-Tao Liu, Jianyong Yu, Bin Ding
Summary:Title screen
Traditional ceramic materials are prone to crushing due to structural collapse at high temperatures. Current efforts are focused on developing flexible and elastic ceramic materials with high thermal stability to address practical needs in the field of high-temperature thermal insulation, but this remains a significant challenge. In this work, elastic and compressible barium aluminosilicate (BAS) nanofibrous sponges are fabricated through gelation electrospinning and calcination processes. The resulting BAS nanofibrous sponges demonstrate excellent elasticity and compressibility across a temperature range of −196 to 1400 °C and can withstand 1000 compression cycles without structural collapse. Furthermore, they exhibit low thermal conductivity (0.0239 W m–1 K–1), low bulk density (4.42 mg cm–3), and high working temperature. In this sense, our study highlights the great potential of BAS nanofibrous sponges as thermal protective materials in extreme operating environments
Текстовый файл
AM_Agreement
Published: 2025
Subjects:
Online Access:https://doi.org/10.1021/acsanm.5c01368
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=681313

MARC

LEADER 00000naa0a2200000 4500
001 681313
005 20250821112420.0
090 |a 681313 
100 |a 20250821d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Elastic and Compressive Barium Aluminosilicate Nanofibrous Sponge for Thermal Insulation up to 1400 °C  |f Hangyuan Guo, Hualei Liu, Lingqiao Wei [et al.] 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
330 |a Traditional ceramic materials are prone to crushing due to structural collapse at high temperatures. Current efforts are focused on developing flexible and elastic ceramic materials with high thermal stability to address practical needs in the field of high-temperature thermal insulation, but this remains a significant challenge. In this work, elastic and compressible barium aluminosilicate (BAS) nanofibrous sponges are fabricated through gelation electrospinning and calcination processes. The resulting BAS nanofibrous sponges demonstrate excellent elasticity and compressibility across a temperature range of −196 to 1400 °C and can withstand 1000 compression cycles without structural collapse. Furthermore, they exhibit low thermal conductivity (0.0239 W m–1 K–1), low bulk density (4.42 mg cm–3), and high working temperature. In this sense, our study highlights the great potential of BAS nanofibrous sponges as thermal protective materials in extreme operating environments 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t ACS Applied Nano Materials  |c Washington  |n American Chemical Society 
463 1 |t Vol. 8, iss. 19  |v P. 9995-10003  |d 2025 
610 1 |a ceramic sponge 
610 1 |a electrospinning 
610 1 |a barium aluminosilicate nanofiber 
610 1 |a compressibility 
610 1 |a thermal insulation 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 0 |a Hangyuan Guo 
701 0 |a Hualei Liu 
701 0 |a Lingqiao Wei 
701 0 |a Songchun Fang 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |9 15957 
701 0 |a Yi-Tao Liu 
701 0 |a Jianyong Yu 
701 0 |a Bin Ding 
801 0 |a RU  |b 63413507  |c 20250819  |g RCR 
856 4 |u https://doi.org/10.1021/acsanm.5c01368  |z https://doi.org/10.1021/acsanm.5c01368 
942 |c CF