The Effect of Various Surface Functionalizations of Core–Shell Nanoactuators on Magnetoelectrically Driven Cell Growth

Detaylı Bibliyografya
Parent link:ACS Applied Materials & Interfaces.— .— Washington: American Chemical Society
Vol. 17, iss. 14.— 2025.— P. 21614-21629
Diğer Yazarlar: Chernozem P. V. Polina Viktorovna, Romashchenko A. V. Aleksandr Viktorovich, Solovieva O. I. Olga, Ibraeva A. Zh. Azhar Zhangeldinovna, Nosov G. Georgy, Koptsev D. A. Danila Andreevich, Lisitsyn S. Sergey, Surmeneva M. A. Maria Alexandrovna, Vagner D. Dmitry, Gerasimov E. Yu. Evgeny, Kazantsev S. O. Sergey Olegovich, Lozhkomoev A. S. Aleksandr Sergeevich, Sukhorukov G. B. Gleb Borisovich, Surmenev R. A. Roman Anatolievich, Chernozem R. V. Roman Viktorovich
Özet:Title screen
Magnetoelectric (ME) nanoparticles (NPs) exhibit strong coupling between magnetic and electric properties, enabling wireless control of biological processes through electromagnetic stimulation, which paves the way for diverse biomedical applications. However, the surface functionalization of ME NPs and its impact on their structure, physical properties, and biological response remain largely unexplored. In this study, biocompatible citric acid (CA) and pectin (PEC) were employed to functionalize quasi-spherical ME core–shell NPs comprising a magnetic spinel MnFe2O4 core (∼23 nm) and a ferroelectric perovskite Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) shell (∼5 nm), synthesized using microwave-assisted hydrothermal processing. The surface functionalization led to the formation of covalent bonds between CA and metal ions of NPs via chelation. The surface functionalization with PEC increased ζ-potential values of ME NPs up to −46.2 ± 0.6 mV compared to CA (25.3 ± 1.0 mV). Both MFO@BCZT NPs with CA and PEC exhibited low coercivity values (69 ± 5 and 29 ± 2 Oe, respectively) with a pronounced specific saturation magnetization (6.1 ± 0.2 and 5.2 ± 0.2 emu/g, respectively). No effect of the BCZT shell with subsequent CA (746 ± 22 Oe) and PEC (754 ± 23 Oe) surface functionalizations on the anisotropy field of ME NPs was observed compared to the pristine MFO cores (754 ± 23 Oe). Both CA-/PEC-functionalized MFO@BCZT NPs exhibited ferroelectric behavior with robust piezoresponse (9.95 ± 1.36 and 10.24 ± 2.03 pm/V, respectively) and high ME response (81 × 104 and 80 × 104 mV·cm–1·Oe–1, respectively), comparable to the most frequently studied Co-based analogs. In vitro assays demonstrated the ability of the developed ME NPs to control calcium flux, which enables bidirectional regulation of cell proliferation. This work advances the development of efficient and biocompatible ME NPs with promising applications in the noninvasive and targeted stimulation of cell behavior
Текстовый файл
AM_Agreement
Dil:İngilizce
Baskı/Yayın Bilgisi: 2025
Konular:
Online Erişim:https://doi.org/10.1021/acsami.4c21337
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=681222

MARC

LEADER 00000naa0a2200000 4500
001 681222
005 20251224103147.0
090 |a 681222 
100 |a 20250818d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a The Effect of Various Surface Functionalizations of Core–Shell Nanoactuators on Magnetoelectrically Driven Cell Growth  |f Polina V. Chernozem, Alexander V. Romashchenko, Olga I. Solovieva [et al.] 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 86 tit 
330 |a Magnetoelectric (ME) nanoparticles (NPs) exhibit strong coupling between magnetic and electric properties, enabling wireless control of biological processes through electromagnetic stimulation, which paves the way for diverse biomedical applications. However, the surface functionalization of ME NPs and its impact on their structure, physical properties, and biological response remain largely unexplored. In this study, biocompatible citric acid (CA) and pectin (PEC) were employed to functionalize quasi-spherical ME core–shell NPs comprising a magnetic spinel MnFe2O4 core (∼23 nm) and a ferroelectric perovskite Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) shell (∼5 nm), synthesized using microwave-assisted hydrothermal processing. The surface functionalization led to the formation of covalent bonds between CA and metal ions of NPs via chelation. The surface functionalization with PEC increased ζ-potential values of ME NPs up to −46.2 ± 0.6 mV compared to CA (25.3 ± 1.0 mV). Both MFO@BCZT NPs with CA and PEC exhibited low coercivity values (69 ± 5 and 29 ± 2 Oe, respectively) with a pronounced specific saturation magnetization (6.1 ± 0.2 and 5.2 ± 0.2 emu/g, respectively). No effect of the BCZT shell with subsequent CA (746 ± 22 Oe) and PEC (754 ± 23 Oe) surface functionalizations on the anisotropy field of ME NPs was observed compared to the pristine MFO cores (754 ± 23 Oe). Both CA-/PEC-functionalized MFO@BCZT NPs exhibited ferroelectric behavior with robust piezoresponse (9.95 ± 1.36 and 10.24 ± 2.03 pm/V, respectively) and high ME response (81 × 104 and 80 × 104 mV·cm–1·Oe–1, respectively), comparable to the most frequently studied Co-based analogs. In vitro assays demonstrated the ability of the developed ME NPs to control calcium flux, which enables bidirectional regulation of cell proliferation. This work advances the development of efficient and biocompatible ME NPs with promising applications in the noninvasive and targeted stimulation of cell behavior 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t ACS Applied Materials & Interfaces  |c Washington  |n American Chemical Society 
463 1 |t Vol. 17, iss. 14  |v P. 21614-21629  |d 2025 
610 1 |a magnetoelectrics 
610 1 |a magnetic materials 
610 1 |a core−shell nanoparticles 
610 1 |a surface functionalization 
610 1 |a neuronal stimulation 
610 1 |a cancer treatment 
610 1 |a noninvasive electrostimulation 
610 1 |a biomodal cell growth 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Chernozem  |b P. V.  |c specialist in the field of informatics and computer technology  |c Research Engineer of Tomsk Polytechnic University  |f 1997-  |g Polina Viktorovna  |9 22733 
701 1 |a Romashchenko  |b A. V.  |g Aleksandr Viktorovich  |f 1986-  |c biologist  |c Associate Professor of Tomsk Polytechnic University, Candidate of biological sciences  |x TPU  |y Томск  |9 88955 
701 1 |a Solovieva  |b O. I.  |g Olga 
701 1 |a Ibraeva  |b A. Zh.  |g Azhar Zhangeldinovna  |f 2000-  |c biologist  |c Laboratory assistant of Tomsk Polytechnic University  |y Tomsk  |9 88957 
701 1 |a Nosov  |b G.  |g Georgy 
701 1 |a Koptsev  |b D. A.  |c specialist in the field of material science  |c Laboratory assistant of Tomsk Polytechnic University  |f 2003-  |g Danila Andreevich  |9 88597 
701 1 |a Lisitsyn  |b S.  |g Sergey 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |9 15966 
701 1 |a Vagner  |b D.  |g Dmitry 
701 1 |a Gerasimov  |b E. Yu.  |g Evgeny 
701 1 |a Kazantsev  |b S. O.  |c specialist in the field of material science  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Sergey Olegovich  |9 18951 
701 1 |a Lozhkomoev  |b A. S.  |c specialist in the field of medical technology  |c researcher of Tomsk Polytechnic University  |f 1982-  |g Aleksandr Sergeevich  |9 18056 
701 1 |a Sukhorukov  |b G. B.  |c chemist  |c The Head of the Laboratory of Tomsk Polytechnic University, Candidate of physical and mathematical sciences  |f 1969-  |g Gleb Borisovich  |9 20271 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |9 15957 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |9 19499 
801 0 |a RU  |b 63413507  |c 20250818  |g RCR 
856 4 |u https://doi.org/10.1021/acsami.4c21337  |z https://doi.org/10.1021/acsami.4c21337 
942 |c CF