Photochemistry dominates over photothermal effects in the laser-induced reduction of graphene oxide by visible light

Xehetasun bibliografikoak
Parent link:Nature Communications.— .— New York: Springer Nature
Vol. 15, iss. 1.— 2024.— Article number 9711, 13 p.
Beste egile batzuk: Fatkullin M. I. Maksim Ilgizovich, Cheshev D. L. Dmitry Leonidovich, Averkiev A. A. Andrey Alekseevich, Gorbunova A. Alina, Murastov G. Gennadiy, Liu Jianxi, Postnikov P. S. Pavel Sergeevich, Cheng Chong, Rodriguez (Rodriges) Contreras R. D. Raul David, Sheremet E. S. Evgeniya Sergeevna
Gaia:Title screen
Graphene oxide (GO) possesses specific properties that are revolutionizing materials science, with applications extending from flexible electronics to advanced nanotechnology. A key method for harnessing GO’s potential is its laser-induced reduction, yet the exact mechanisms — photothermal versus photochemical effects — remain unclear. Herein, we discover the dominant role of photochemical reactions in the laser reduction of GO under visible light, challenging the prevailing assumption that photothermal effects are dominant. Employing a combination of Raman thermometry, X-ray photoelectron and photoluminescence spectroscopies, and electrical atomic force microscopy, we quantify the temperature and map the reduction process across micro and nano scales. Our findings demonstrate that the photochemical cleavage of oxygen-containing groups below a reduction threshold temperature is a decisive factor in GO reduction, leading to distinct characteristics that cannot be replicated by heating alone. This work clarifies the fundamental mechanisms of GO transformation under visible laser irradiation, highlighting the dominant role of photochemical processes. Distinguishing these subtleties enables the development of laser-reduced GO platforms for graphene-based applications compatible with industrial scales. We illustrate this potential by encoding information on GO surfaces as optical storage, allowing us to write binary sequences in long-term memory encoding invisible even through an optical microscope
Текстовый файл
AM_Agreement
Hizkuntza:ingelesa
Argitaratua: 2024
Gaiak:
Sarrera elektronikoa:https://doi.org/10.1038/s41467-024-53503-y
Formatua: Baliabide elektronikoa Liburu kapitulua
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680861

MARC

LEADER 00000naa0a2200000 4500
001 680861
005 20250624152831.0
090 |a 680861 
100 |a 20250624d2024 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Photochemistry dominates over photothermal effects in the laser-induced reduction of graphene oxide by visible light  |f Maxim Fatkullin, Dmitry Cheshev, Andrey Averkiev [et al.] 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 44 tit 
330 |a Graphene oxide (GO) possesses specific properties that are revolutionizing materials science, with applications extending from flexible electronics to advanced nanotechnology. A key method for harnessing GO’s potential is its laser-induced reduction, yet the exact mechanisms — photothermal versus photochemical effects — remain unclear. Herein, we discover the dominant role of photochemical reactions in the laser reduction of GO under visible light, challenging the prevailing assumption that photothermal effects are dominant. Employing a combination of Raman thermometry, X-ray photoelectron and photoluminescence spectroscopies, and electrical atomic force microscopy, we quantify the temperature and map the reduction process across micro and nano scales. Our findings demonstrate that the photochemical cleavage of oxygen-containing groups below a reduction threshold temperature is a decisive factor in GO reduction, leading to distinct characteristics that cannot be replicated by heating alone. This work clarifies the fundamental mechanisms of GO transformation under visible laser irradiation, highlighting the dominant role of photochemical processes. Distinguishing these subtleties enables the development of laser-reduced GO platforms for graphene-based applications compatible with industrial scales. We illustrate this potential by encoding information on GO surfaces as optical storage, allowing us to write binary sequences in long-term memory encoding invisible even through an optical microscope 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Nature Communications  |c New York  |n Springer Nature 
463 1 |t Vol. 15, iss. 1  |v Article number 9711, 13 p.  |d 2024 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Optical properties and devices 
610 1 |a Photochemistry 
701 1 |a Fatkullin  |b M. I.  |c chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1997-  |g Maksim Ilgizovich  |9 22844 
701 1 |a Cheshev  |b D. L.  |c Specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 2000-  |g Dmitry Leonidovich  |9 22924 
701 1 |a Averkiev  |b A. A.  |c Specialist in the field of electronics  |c Research Engineer of Tomsk Polytechnic University  |f 1996-  |g Andrey Alekseevich  |9 22723 
701 1 |a Gorbunova  |b A.  |c chemical engineer  |c engineer of Tomsk Polytechnic University  |f 1998-  |g Alina  |9 22427 
701 1 |a Murastov  |b G.  |g Gennadiy 
701 0 |a Liu Jianxi 
701 1 |a Postnikov  |b P. S.  |c organic chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1984-  |g Pavel Sergeevich  |9 15465 
701 0 |a Cheng Chong  
701 1 |a Rodriguez (Rodriges) Contreras  |b R. D.  |c Venezuelan physicist, doctor of science  |c Professor of Tomsk Polytechnic University  |f 1982-  |g Raul David  |9 21179 
701 1 |a Sheremet  |b E. S.  |c physicist  |c Professor of Tomsk Polytechnic University  |f 1988-  |g Evgeniya Sergeevna  |9 21197 
801 0 |a RU  |b 63413507  |c 20250624  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1038/s41467-024-53503-y  |z https://doi.org/10.1038/s41467-024-53503-y 
942 |c CF