Effect of Monodisperse Coal Particles on the Maximum Drop Spreading after Impact on a Solid Wall

Bibliographic Details
Parent link:Energies.— .— Basel: MDPI AG
Vol. 16, iss. 14.— 2023.— Article number 5291, 18 p.
Other Authors: Ashikhmin A. E. Alexander Evgenjevich, Khomutov N. A. Nikita Andreevich, Volkov R. S. Roman Sergeevich, Piskunov M. V. Maksim Vladimirovich, Strizhak P. A. Pavel Alexandrovich
Summary:Title screen
The effect of coal hydrophilic particles in water-glycerol drops on the maximum diameter of spreading along a hydrophobic solid surface is experimentally studied by analyzing the velocity of internal flows by Particle Image Velocimetry (PIV). The grinding fineness of coal particles was 45–80 μm and 120–140 μm. Their concentration was 0.06 wt.% and 1 wt.%. The impact of particle-laden drops on a solid surface occurred at Weber numbers (We) from 30 to 120. It revealed the interrelated influence of We and the concentration of coal particles on changes in the maximum absolute velocity of internal flows in a drop within the kinetic and spreading phases of the drop-wall impact. It is explored the behavior of internal convective flows in the longitudinal section of a drop parallel to the plane of the solid wall. The kinetic energy of the translational motion of coal particles in a spreading drop compensates for the energy expended by the drop on sliding friction along the wall. At We = 120, the inertia-driven spreading of the particle-laden drop is mainly determined by the dynamics of the deformable Taylor rim. An increase in We contributes to more noticeable differences in the convection velocities in spreading drops. When the drop spreading diameter rises at the maximum velocity of internal flows, a growth of the maximum spreading diameter occurs. The presence of coal particles causes a general tendency to reduce drop spreading
Текстовый файл
Language:English
Published: 2023
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/132536
https://doi.org/10.3390/en16145291
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680403

MARC

LEADER 00000naa0a2200000 4500
001 680403
005 20250917152955.0
090 |a 680403 
100 |a 20250530d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Effect of Monodisperse Coal Particles on the Maximum Drop Spreading after Impact on a Solid Wall  |f Alexander Ashikhmin, Nikita Khomutov, Roman Volkov [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 34 tit 
330 |a The effect of coal hydrophilic particles in water-glycerol drops on the maximum diameter of spreading along a hydrophobic solid surface is experimentally studied by analyzing the velocity of internal flows by Particle Image Velocimetry (PIV). The grinding fineness of coal particles was 45–80 μm and 120–140 μm. Their concentration was 0.06 wt.% and 1 wt.%. The impact of particle-laden drops on a solid surface occurred at Weber numbers (We) from 30 to 120. It revealed the interrelated influence of We and the concentration of coal particles on changes in the maximum absolute velocity of internal flows in a drop within the kinetic and spreading phases of the drop-wall impact. It is explored the behavior of internal convective flows in the longitudinal section of a drop parallel to the plane of the solid wall. The kinetic energy of the translational motion of coal particles in a spreading drop compensates for the energy expended by the drop on sliding friction along the wall. At We = 120, the inertia-driven spreading of the particle-laden drop is mainly determined by the dynamics of the deformable Taylor rim. An increase in We contributes to more noticeable differences in the convection velocities in spreading drops. When the drop spreading diameter rises at the maximum velocity of internal flows, a growth of the maximum spreading diameter occurs. The presence of coal particles causes a general tendency to reduce drop spreading 
336 |a Текстовый файл 
461 1 |t Energies  |c Basel  |n MDPI AG 
463 1 |t Vol. 16, iss. 14  |v Article number 5291, 18 p.  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a coal particle 
610 1 |a drop impact 
610 1 |a maximum spreading 
610 1 |a PIV 
610 1 |a slurry 
610 1 |a velocity field 
701 1 |a Ashikhmin  |b A. E.  |c Specialist in the field of thermal power engineering and heat engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1998-  |g Alexander Evgenjevich  |9 23065 
701 1 |a Khomutov  |b N. A.  |c specialist in the field of thermal power engineering and heat engineering  |c research engineer at Tomsk Polytechnic University  |f 1997-  |g Nikita Andreevich  |9 23010 
701 1 |a Volkov  |b R. S.  |c specialist in the field of power engineering  |c Associate Professor of the Tomsk Polytechnic University, candidate of technical Sciences  |f 1987-  |g Roman Sergeevich  |9 17499 
701 1 |a Piskunov  |b M. V.  |c specialist in the field of thermal engineering  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Maksim Vladimirovich  |9 17691 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |9 15117 
801 0 |a RU  |b 63413507  |c 20250530 
850 |a 63413507 
856 4 |u http://earchive.tpu.ru/handle/11683/132536  |z http://earchive.tpu.ru/handle/11683/132536 
856 4 |u https://doi.org/10.3390/en16145291  |z https://doi.org/10.3390/en16145291 
942 |c CF