Preparation, Features, and Efficiency of Nanocomposite Fertilisers Based on Glauconite and Ammonium Dihydrogen Phosphate

Bibliografiske detaljer
Parent link:Materials.— .— Basel: MDPI AG
Vol. 16, iss. 18.— 2023.— Article number 6080, 17 p.
Andre forfattere: Rudmin M. A. Maksim Andreevich, Makarov B. I. Boris Igorevich, Lopez-Quiros A. Adrian, Maksimov P. N. Prokopy Nikolaevich, Lokteva V. Yu. Valeriya Yurjevna, Ibraeva K. Kanipa, Kurovsky A. V. Aleksandr Vasiljevich, Gummer Ya. Yana, Ruban A. S. Aleksey Sergeevich
Summary:Title screen
This paper studies the chemical and mechanochemical preparation of glauconite with ammonium dihydrogen phosphate (ADP) nanocomposites with a ratio of 9:1 in the vol.% and wt.%, respectively. The methods include X-ray diffraction analysis, scanning electron microscope with energy-dispersive X-ray spectroscopy, transmission electron microscopy, infrared spectroscopy, and differential thermal analysis with a quadruple mass spectrometer. The manufactured nanocomposites keep the flaky glauconite structure. Some glauconite unit structures have been thickened due to minimal nitrogen (ammonium) intercalation into the interlayer space. The globular, granular, or pellet mineral particles of nanocomposites can be preserved via chemical techniques. Globular and micro-aggregate particles in nanocomposites comprise a thin film of adsorbed ADP. The two-step mechanochemical method makes it possible to slightly increase the proportion of adsorbed (up to 3.2%) and intercalated (up to 6.0%) nutrients versus chemical ways. Nanocomposites prepared via chemical methods consist of glauconite (90%), adsorbed (1.8–3.6%), and intercalated (3.0–3.7%) substances of ADP. Through the use of a potassium-containing clay mineral as an inhibitor, nitrogen, phosphorus, and potassium (NPK), nanocomposite fertilisers of controlled action were obtained. Targeted and controlled release of nutrients such as phosphate, ammonium, and potassium are expected due to various forms of nutrients on the surface, in the micropores, and in the interlayer space of glauconite. This is confirmed via the stepwise dynamics of the release of ammonium, nitrate, potassium, and phosphate from their created nanocomposites. These features of nanocomposites contribute to the stimulation of plant growth and development when fertilisers are applied to the soil
Текстовый файл
Sprog:engelsk
Udgivet: 2023
Fag:
Online adgang:http://earchive.tpu.ru/handle/11683/132516
https://doi.org/10.3390/ma16186080
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680396

MARC

LEADER 00000naa0a2200000 4500
001 680396
005 20251223160924.0
090 |a 680396 
100 |a 20250530d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Preparation, Features, and Efficiency of Nanocomposite Fertilisers Based on Glauconite and Ammonium Dihydrogen Phosphate  |f Maxim Rudmin, Boris Makarov, Adrián López-Quirós [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 86 tit 
330 |a This paper studies the chemical and mechanochemical preparation of glauconite with ammonium dihydrogen phosphate (ADP) nanocomposites with a ratio of 9:1 in the vol.% and wt.%, respectively. The methods include X-ray diffraction analysis, scanning electron microscope with energy-dispersive X-ray spectroscopy, transmission electron microscopy, infrared spectroscopy, and differential thermal analysis with a quadruple mass spectrometer. The manufactured nanocomposites keep the flaky glauconite structure. Some glauconite unit structures have been thickened due to minimal nitrogen (ammonium) intercalation into the interlayer space. The globular, granular, or pellet mineral particles of nanocomposites can be preserved via chemical techniques. Globular and micro-aggregate particles in nanocomposites comprise a thin film of adsorbed ADP. The two-step mechanochemical method makes it possible to slightly increase the proportion of adsorbed (up to 3.2%) and intercalated (up to 6.0%) nutrients versus chemical ways. Nanocomposites prepared via chemical methods consist of glauconite (90%), adsorbed (1.8–3.6%), and intercalated (3.0–3.7%) substances of ADP. Through the use of a potassium-containing clay mineral as an inhibitor, nitrogen, phosphorus, and potassium (NPK), nanocomposite fertilisers of controlled action were obtained. Targeted and controlled release of nutrients such as phosphate, ammonium, and potassium are expected due to various forms of nutrients on the surface, in the micropores, and in the interlayer space of glauconite. This is confirmed via the stepwise dynamics of the release of ammonium, nitrate, potassium, and phosphate from their created nanocomposites. These features of nanocomposites contribute to the stimulation of plant growth and development when fertilisers are applied to the soil 
336 |a Текстовый файл 
461 1 |t Materials  |c Basel  |n MDPI AG 
463 1 |t Vol. 16, iss. 18  |v Article number 6080, 17 p.  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a glauconite 
610 1 |a ammonium dihydrogen phosphate 
610 1 |a controlled-release fertiliser 
610 1 |a potassium 
610 1 |a chemical activation 
610 1 |a mechanochemical activation 
701 1 |a Rudmin  |b M. A.  |c geologist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Geological and Mineralogical Sciences  |f 1989-  |g Maksim Andreevich  |9 16999 
701 1 |a Makarov  |b B. I.  |g Boris Igorevich  |f 1989-  |c geologist  |c Associate Scientist of Tomsk Polytechnic University  |y Tomsk  |9 88909 
701 0 |a Lopez-Quiros  |b A.  |g Adrian 
701 1 |a Maksimov  |b P. N.  |c Geologist  |c Educational master of Tomsk Polytechnic University  |f 1998-  |g Prokopy Nikolaevich  |9 22828 
701 1 |a Lokteva  |b V. Yu.  |g Valeriya Yurjevna 
701 1 |a Ibraeva  |b K.  |g Kanipa 
701 1 |a Kurovsky  |b A. V.  |g Aleksandr Vasiljevich 
701 1 |a Gummer  |b Ya.  |g Yana 
701 1 |a Ruban  |b A. S.  |c geologist  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Aleksey Sergeevich  |9 17590 
801 0 |a RU  |b 63413507  |c 20250530 
850 |a 63413507 
856 4 |u http://earchive.tpu.ru/handle/11683/132516  |z http://earchive.tpu.ru/handle/11683/132516 
856 4 |u https://doi.org/10.3390/ma16186080  |z https://doi.org/10.3390/ma16186080 
942 |c CF