Data driven based deep learning for optimizing carbon storage and methane adsorption in unconventional shale gas reservoirs

Détails bibliographiques
Parent link:Journal of Environmental Chemical Engineering.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 13, iss. 3.— 2025.— Article number 116901, 15 p.
Autres auteurs: Wang Yongjun, Thang Hung Vo, Al-Mudhafar W. J. Watheq, Dai Zhenxue, Hemeng Zhang, Davoodi Sh. Shadfar, Zhang Tao
Résumé:Shale gas is a critical component of the global energy supply, necessitating accurate gas-in-place evaluations for optimized extraction. In unconventional shale reservoirs, gas adsorption is the primary storage mechanism. This study introduces a novel one-dimensional Convolutional Neural Network (1D-CNN) to predict gas adsorption. The 1D-CNN model was compared with traditional machine learning models, including Random Forest (RF), Extra Trees (ET), and Gradient Boosting (GB). Using a dataset of 352 samples with key features—pressure, temperature, TOC, and moisture content—the 1D-CNN achieved superior predictive accuracy, with a mean absolute error (MAE) of 0.015 and R² of 0.9949, outperforming other models. Sensitivity analysis identified moisture content as the most influential factor affecting adsorption. Validation using unseen methane adsorption data demonstrated that the PIDL model generalizes well and produces physically consistent predictions. Overall, the PIDL-enhanced 1D-CNN model advances methane adsorption prediction by integrating domain-specific physical laws into a deep learning framework, facilitating more efficient shale gas extraction and improved carbon sequestration practices. This hybrid approach not only reduces experimental costs but also provides consistent and reliable results, offering a robust solution for real-world applications
Текстовый файл
Langue:anglais
Publié: 2025
Sujets:
Accès en ligne:https://doi.org/10.1016/j.jece.2025.116901
Format: Électronique Chapitre de livre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680359

MARC

LEADER 00000naa0a2200000 4500
001 680359
005 20250528110213.0
090 |a 680359 
100 |a 20250528d2025 k||y0rusy50 ba 
101 1 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Data driven based deep learning for optimizing carbon storage and methane adsorption in unconventional shale gas reservoirs  |f Yongjun Wang, Hung Vo Thanh, Watheq J. Al-Mudhafar [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
320 |a References: 52 tit 
330 |a Shale gas is a critical component of the global energy supply, necessitating accurate gas-in-place evaluations for optimized extraction. In unconventional shale reservoirs, gas adsorption is the primary storage mechanism. This study introduces a novel one-dimensional Convolutional Neural Network (1D-CNN) to predict gas adsorption. The 1D-CNN model was compared with traditional machine learning models, including Random Forest (RF), Extra Trees (ET), and Gradient Boosting (GB). Using a dataset of 352 samples with key features—pressure, temperature, TOC, and moisture content—the 1D-CNN achieved superior predictive accuracy, with a mean absolute error (MAE) of 0.015 and R² of 0.9949, outperforming other models. Sensitivity analysis identified moisture content as the most influential factor affecting adsorption. Validation using unseen methane adsorption data demonstrated that the PIDL model generalizes well and produces physically consistent predictions. Overall, the PIDL-enhanced 1D-CNN model advances methane adsorption prediction by integrating domain-specific physical laws into a deep learning framework, facilitating more efficient shale gas extraction and improved carbon sequestration practices. This hybrid approach not only reduces experimental costs but also provides consistent and reliable results, offering a robust solution for real-world applications 
336 |a Текстовый файл 
461 1 |t Journal of Environmental Chemical Engineering  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 13, iss. 3  |v Article number 116901, 15 p.  |d 2025 
610 1 |a Gas adsorption 
610 1 |a Shale gas reservoir 
610 1 |a CO2 sequestration 
610 1 |a Deep learning 
610 1 |a Convolutional Neural Network (CNN) 
610 1 |a CCUS 
610 1 |a Carbon neutrality 
610 1 |a Next generation reservoir simulator for CCS 
610 1 |a труды учёных ТПУ 
610 1 |a электронный ресурс 
701 0 |a Wang Yongjun 
701 0 |a Thang Hung Vo 
701 1 |a Al-Mudhafar  |b W. J.  |g Watheq 
701 0 |a Dai Zhenxue 
701 0 |a Hemeng Zhang 
701 1 |a Davoodi  |b Sh.  |c specialist in the field of petroleum engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1990-  |g Shadfar  |9 22200 
701 0 |a Zhang Tao 
801 0 |a RU  |b 63413507  |c 20250528 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.jece.2025.116901  |z https://doi.org/10.1016/j.jece.2025.116901 
942 |c CF