Collective Acceleration of Helium Ions from Its Residual Atmosphere in a Luce Diode

Bibliografiset tiedot
Parent link:Quantum Beam Science.— .— Basel: MDPI AG
Vol. 7, iss. 4.— 2023.— Article number 33, 12 p.
Päätekijä: Ryzhkov V. A. Vladislav Andreevich
Muut tekijät: Zhuravlev M. V. Mikhail Valerievich, Remnev (Remnyov) G. E. Gennady Efimovich
Yhteenveto:Title screen
The collective acceleration of helium ions from its residual atmosphere in the Luce diode was studied at helium pressures from 0.13 to 0.23 Pa. The energy of accelerated ions was determined from the drift velocity of the virtual cathode accelerating the ions. The number of 4He was determined by radioactivities of 13N and 30P induced in h-BN and Al targets via the nuclear reactions 10B(α,n)13N and 27Al(α,n)30P. The efficiency of capturing 4He ions in collective acceleration from the residual helium atmosphere was estimated as 0.25%. With increasing helium pressure above 0.15 Pa, the energy of the main ion group noticeably decreased to 0.46 MeV/amu compared to the acceleration from a usual residual atmosphere (~0.6 MeV/amu); however, the probability of ion acceleration to a specific energy of up to 1.57 MeV/amu increased significantly. Such increases in the ion energy were accompanied by the appearance of the signal of the second virtual cathode 7–9 ns after the appearance of the first virtual cathode
Текстовый файл
Julkaistu: 2023
Aiheet:
Linkit:https://doi.org/10.3390/qubs7040033
Aineistotyyppi: Elektroninen Kirjan osa
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680234
Kuvaus
Yhteenveto:Title screen
The collective acceleration of helium ions from its residual atmosphere in the Luce diode was studied at helium pressures from 0.13 to 0.23 Pa. The energy of accelerated ions was determined from the drift velocity of the virtual cathode accelerating the ions. The number of 4He was determined by radioactivities of 13N and 30P induced in h-BN and Al targets via the nuclear reactions 10B(α,n)13N and 27Al(α,n)30P. The efficiency of capturing 4He ions in collective acceleration from the residual helium atmosphere was estimated as 0.25%. With increasing helium pressure above 0.15 Pa, the energy of the main ion group noticeably decreased to 0.46 MeV/amu compared to the acceleration from a usual residual atmosphere (~0.6 MeV/amu); however, the probability of ion acceleration to a specific energy of up to 1.57 MeV/amu increased significantly. Such increases in the ion energy were accompanied by the appearance of the signal of the second virtual cathode 7–9 ns after the appearance of the first virtual cathode
Текстовый файл
DOI:10.3390/qubs7040033