Fracture toughness and abrasive wear of (ZrTi)B2–SiC ceramic composites with low-modulus hexagonal boron nitride inclusions

Bibliographic Details
Parent link:Ceramics International.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 51, iss. 18, Pt. B.— 2025.— P. 26401-26410
Other Authors: Buyakov A. S. Ales Sergeevich, Marianna L. Lukjyanets, Fotin I. A. Igor Andreevich, Shmakov V. V. Vasily Valerjevich, Burlachenko A. G. Aleksandr Gennadjevich, Rudmin M. A. Maksim Andreevich, Buyakova S. P. Svetlana Petrovna
Summary:Title screen
The study investigated the effect of hexagonal boron nitride (h-BN) content on fracture toughness and abrasive wear resistance of ZrB2–TiB2–SiC composites. Four compositions of ceramic composites were prepared from powder mixtures by pressure sintering at 1850 °C. In all the composites, the TiB2:ZrB2:SiC ratio was maintained as 16:69:15. The h-BN content in the ceramic composites was 3, 5, and 7 vol %. Sintering of the ceramic composites yielded the formation of (ZrTi)B2 solid solution, with the ratio of ZrB2 and TiB2 components remaining constant, irrespective of the h-BN content in the composites. The addition of hexagonal boron nitride into the (ZrTi)B2–SiC matrix was found to enhance fracture toughness through two mechanisms: crack propagation inhibition under residual compressive stresses and the Cook-Gordon mechanism. It was revealed that (ZrTi)B2–SiC–h-BN composites are more susceptible to abrasive wear when compared to (ZrTi)B2–SiC composites. Abrasive wear of (ZrTi)B2–SiC–h-BN composites occurs due to the formation of subsurface microcracks, their propagation to relatively weak interface between low-modulus h-BN inclusions and high-modulus (ZrTi)B2–SiC matrix, and subsequent separation of h-BN. The study showed that a greater number of subsurface microcracks are formed on the wear surface of (ZrTi)B2–SiC–h-BN composites compared to (ZrTi)B2–SiC composites. Furthermore, it was determined that composites containing 3 vol % h-BN exhibit the highest residual bending strength after abrasion
Текстовый файл
AM_Agreement
Language:English
Published: 2025
Subjects:
Online Access:https://doi.org/10.1016/j.ceramint.2025.03.321
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680129

MARC

LEADER 00000naa0a2200000 4500
001 680129
005 20250827152200.0
090 |a 680129 
100 |a 20250512d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Fracture toughness and abrasive wear of (ZrTi)B2–SiC ceramic composites with low-modulus hexagonal boron nitride inclusions  |f Ales Buyakov, Marianna Lukyanets, Igor Fotin [et al.] 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 58 tit 
330 |a The study investigated the effect of hexagonal boron nitride (h-BN) content on fracture toughness and abrasive wear resistance of ZrB2–TiB2–SiC composites. Four compositions of ceramic composites were prepared from powder mixtures by pressure sintering at 1850 °C. In all the composites, the TiB2:ZrB2:SiC ratio was maintained as 16:69:15. The h-BN content in the ceramic composites was 3, 5, and 7 vol %. Sintering of the ceramic composites yielded the formation of (ZrTi)B2 solid solution, with the ratio of ZrB2 and TiB2 components remaining constant, irrespective of the h-BN content in the composites. The addition of hexagonal boron nitride into the (ZrTi)B2–SiC matrix was found to enhance fracture toughness through two mechanisms: crack propagation inhibition under residual compressive stresses and the Cook-Gordon mechanism. It was revealed that (ZrTi)B2–SiC–h-BN composites are more susceptible to abrasive wear when compared to (ZrTi)B2–SiC composites. Abrasive wear of (ZrTi)B2–SiC–h-BN composites occurs due to the formation of subsurface microcracks, their propagation to relatively weak interface between low-modulus h-BN inclusions and high-modulus (ZrTi)B2–SiC matrix, and subsequent separation of h-BN. The study showed that a greater number of subsurface microcracks are formed on the wear surface of (ZrTi)B2–SiC–h-BN composites compared to (ZrTi)B2–SiC composites. Furthermore, it was determined that composites containing 3 vol % h-BN exhibit the highest residual bending strength after abrasion 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Ceramics International  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 51, iss. 18, Pt. B  |v P. 26401-26410  |d 2025 
610 1 |a Fracture toughness 
610 1 |a Abrasive wear 
610 1 |a The cook-gordon mechanism 
610 1 |a Solid solution (ZrTi)B2 
610 1 |a Hexagonal boron nitride 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Buyakov  |b A. S.  |g Ales Sergeevich 
701 1 |a Marianna  |b L.  |g Lukjyanets 
701 1 |a Fotin  |b I. A.  |g Igor Andreevich 
701 1 |a Shmakov  |b V. V.  |g Vasily Valerjevich 
701 1 |a Burlachenko  |b A. G.  |g Aleksandr Gennadjevich 
701 1 |a Rudmin  |b M. A.  |c geologist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Geological and Mineralogical Sciences  |f 1989-  |g Maksim Andreevich  |9 16999 
701 1 |a Buyakova  |b S. P.  |c specialist in the field of material science  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1968-  |g Svetlana Petrovna  |9 18108 
801 0 |a RU  |b 63413507  |c 20250512  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.ceramint.2025.03.321  |z https://doi.org/10.1016/j.ceramint.2025.03.321 
942 |c CF