Characterization of corrosion properties, structure and chemistry of titanium-implanted TiNi shape memory alloy

Detalles Bibliográficos
Parent link:Materials Characterization.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 206.— 2023.— Article number 113457, 13 p.
Outros autores: Semin V. O. Viktor Olegovich, D'yachenko F. A. Filipp Anatoljevich, Erkovich A. V. Alina Vadimovna, Ostapenko M. G. Marina Gennadjevna, Chernova A. P. Anna Pavlovna, Shulepov I. A. Ivan Anisimovich, Savkin K. P. Konstantin Petrovich, Khabibova E. D. Evgeniya Denisovna, Yuzhakova S. I. Sofjya Igorevna, Meysner L. L. Lyudmila Leonidovna
Summary:Title screen
The near-equiatomic TiNi shape memory alloy passivated through electropolishing and ion implantation with titanium has been studied toward corrosion performance in simulated body fluids (0.9 wt% NaCl, artificial blood plasma). Corrosion rate, nickel oxidation, repassivation and charge transfer has been examined by conventional methods of potentiodynamic polarization, electrochemical impedance spectroscopy and cyclic voltammetry. Experimental validation of the electrochemical results was performed using electron-microscopic (SEM/TEM) techniques and Auger electron spectroscopy. It was revealed that the thickness of the passive layer (TiO + TiO2) could be increased by ∼5 times after ion implantation. Regardless of the corrosion environment, the TiNi alloys exhibiting different surface finishes still suffer from pitting corrosion associated with leaching of nickel ions via oxidation reaction. The Ti-implanted alloy shows satisfactory corrosion resistance in comparison with the reference electropolished TiNi alloy. After ion implantation, the dissolution of the surface layer during anodic polarization was restricted due to the formation of the Ni-depleted amorphous sublayer. Auger Ti- and Ni-LMM peaks are found to be shifted to lower energies due to the contribution of Ni O and Ti O bonding. It has been shown that not the thickness, but rather the structure and phase composition of the oxide layer are main factors responsible for corrosion performance
Текстовый файл
AM_Agreement
Idioma:inglés
Publicado: 2023
Subjects:
Acceso en liña:https://doi.org/10.1016/j.matchar.2023.113457
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680071

MARC

LEADER 00000naa0a2200000 4500
001 680071
005 20250506140510.0
090 |a 680071 
100 |a 20250506d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Characterization of corrosion properties, structure and chemistry of titanium-implanted TiNi shape memory alloy  |f V. O. Semin, F. A. D'yachenko, A. V. Erkovich [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 91 tit 
330 |a The near-equiatomic TiNi shape memory alloy passivated through electropolishing and ion implantation with titanium has been studied toward corrosion performance in simulated body fluids (0.9 wt% NaCl, artificial blood plasma). Corrosion rate, nickel oxidation, repassivation and charge transfer has been examined by conventional methods of potentiodynamic polarization, electrochemical impedance spectroscopy and cyclic voltammetry. Experimental validation of the electrochemical results was performed using electron-microscopic (SEM/TEM) techniques and Auger electron spectroscopy. It was revealed that the thickness of the passive layer (TiO + TiO2) could be increased by ∼5 times after ion implantation. Regardless of the corrosion environment, the TiNi alloys exhibiting different surface finishes still suffer from pitting corrosion associated with leaching of nickel ions via oxidation reaction. The Ti-implanted alloy shows satisfactory corrosion resistance in comparison with the reference electropolished TiNi alloy. After ion implantation, the dissolution of the surface layer during anodic polarization was restricted due to the formation of the Ni-depleted amorphous sublayer. Auger Ti- and Ni-LMM peaks are found to be shifted to lower energies due to the contribution of Ni O and Ti O bonding. It has been shown that not the thickness, but rather the structure and phase composition of the oxide layer are main factors responsible for corrosion performance 
336 |a Текстовый файл 
371 |a AM_Agreement 
461 1 |t Materials Characterization  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 206  |v Article number 113457, 13 p.  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Semin  |b V. O.  |g Viktor Olegovich 
701 1 |a D'yachenko  |b F. A.  |g Filipp Anatoljevich 
701 1 |a Erkovich  |b A. V.  |c chemical technologist  |c engineer of Tomsk Polytechnic University  |f 1997-  |g Alina Vadimovna  |9 23015 
701 1 |a Ostapenko  |b M. G.  |g Marina Gennadjevna 
701 1 |a Chernova  |b A. P.  |c chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1984-  |g Anna Pavlovna  |9 22278 
701 1 |a Shulepov  |b I. A.  |g Ivan Anisimovich 
701 1 |a Savkin  |b K. P.  |g Konstantin Petrovich 
701 1 |a Khabibova  |b E. D.  |g Evgeniya Denisovna 
701 1 |a Yuzhakova  |b S. I.  |g Sofjya Igorevna 
701 1 |a Meysner  |b L. L.  |g Lyudmila Leonidovna 
801 0 |a RU  |b 63413507  |c 20250506 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.matchar.2023.113457  |z https://doi.org/10.1016/j.matchar.2023.113457 
942 |c CF