Meteorological data analysis using extreme learning machines

מידע ביבליוגרפי
Parent link:Proceedings of SPIE.— .— Bellingham: SPIE
מחברים אחרים: Botygin I. A. Igor Aleksandrovich, Volkov Yu. V., Sherstnev V. S. Vladislav Stanislavovich, Sherstneva A. I. Anna Igorevna
סיכום:Title screen
A practical study of statistical modelling language packages R has been carried out using regularization algorithms, more precisely one of the algorithms called the Extreme Learning Machine (ELM). Due to its simple implementation, ELM requires less researcher intervention in setting its parameters. At the same time, the generalization performance of ELM is not sensitive to the dimensionality of the feature space (the number of hidden nodes). Even on a medium-power personal computer, this class of neural networks has made it possible to perform numerous experiments on model building, forecasting and identifying cause-effect relationships in meteorological time series, downloaded from the climate monitoring system of IMCES SB RAS in a reasonable amount of time
Текстовый файл
AM_Agreement
שפה:אנגלית
יצא לאור: 2023
נושאים:
גישה מקוונת:https://doi.org/10.1117/12.2690069
Статья на русском языке
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=680002

MARC

LEADER 00000naa0a2200000 4500
001 680002
005 20250429143635.0
090 |a 680002 
100 |a 20250429d2023 k||y0rusy50 ba 
101 0 |a eng  |c rus 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Meteorological data analysis using extreme learning machines  |d Анализ метеорологических данных с использованием экстремальных самообучающихся машин  |z rus  |f I. A. Botygin, Yu. V. Volkov, V. S. Sherstnev, A. I. Sherstneva 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 17 tit 
330 |a A practical study of statistical modelling language packages R has been carried out using regularization algorithms, more precisely one of the algorithms called the Extreme Learning Machine (ELM). Due to its simple implementation, ELM requires less researcher intervention in setting its parameters. At the same time, the generalization performance of ELM is not sensitive to the dimensionality of the feature space (the number of hidden nodes). Even on a medium-power personal computer, this class of neural networks has made it possible to perform numerous experiments on model building, forecasting and identifying cause-effect relationships in meteorological time series, downloaded from the climate monitoring system of IMCES SB RAS in a reasonable amount of time 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |0 646891  |9 646891  |t Proceedings of SPIE  |c Bellingham  |n SPIE 
463 1 |t Vol. 12780 : Atmospheric and Ocean Optics: Atmospheric Physics  |l Оптика атмосферы и океана. Физика атмосферы  |o proceedings 29th International Symposium, 26-30 June 2023 Moscow, Russian Federation  |o материалы XXIX Международного симпозиума, 26-30 июня 2023 года, Москва  |f Institute of Atmospheric Optics SB RAS ; eds. O. A. Romanovskii  |v 1278073, 4 p.  |d 2023 
610 1 |a feedforward neural networks 
610 1 |a machine learning 
610 1 |a extreme learning machine 
610 1 |a multilayer neural network 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Botygin  |b I. A.  |c specialist in the field of Informatics and computer engineering  |c Associate Professor of Tomsk Polytechnic University, candidate of technical sciences  |f 1947-  |g Igor Aleksandrovich  |9 17356 
701 1 |a Volkov  |b Yu. V. 
701 1 |a Sherstnev  |b V. S.  |c specialist in the field of Informatics and computer engineering  |c associate Professor of Tomsk Polytechnic University, candidate of technical Sciences  |f 1974-  |g Vladislav Stanislavovich  |9 17137 
701 1 |a Sherstneva  |b A. I.  |c mathematician  |c associate Professor of Tomsk Polytechnic University, candidate of physico-mathematical Sciences  |f 1974-  |g Anna Igorevna  |9 18721 
801 2 |a RU  |b 63413507  |c 20250429  |g RCR 
850 |a 63413507 
856 4 |u https://doi.org/10.1117/12.2690069  |z https://doi.org/10.1117/12.2690069 
856 4 |u https://symp-pv.iao.ru/files/symp/aoo/29/E.pdf#page=62  |z Статья на русском языке 
942 |c CF