Materials and techniques for hydrogen separation from methane-containing gas mixtures

Bibliographic Details
Parent link:International Journal of Hydrogen Energy.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 48, iss. 73.— 2023.— P. 28390-28411
Other Authors: Lider A. M. Andrey Markovich, Kudiyarov V. N. Victor Nikolaevich, Kurdyumov N. Nikita, Lyu Jinzhe, Travitsky N. Nakhum, Hotza D. Dachamir
Summary:Title screen
Because hydrogen is a high-quality, clean energy carrier, it is and will continue to be one of the key elements/fuels to help solve the climate problem. In addition, new chemical production processes and the development of high-efficiency fuel cells require high-purity hydrogen, as it is one of their critical components. The production of hydrogen from natural gas makes it possible to smoothly transition to “green energy”. However, synthetically produced hydrogen contains other impurities and some unreacted substituents such as CO2, N2,CH4, etc. We have reviewed the main technologies for hydrogen purification, such as pressure swing adsorption (PSA), and cryogenic distillation. The focus of the article will be on the description of hydrogen separation, including a membrane module and an electrochemical hydrogen compressor. The scalability of the technology and the high degree of purification make membrane technology a promising method for hydrogen purification and separation. Different properties of membranes, such as high resistance to poisoning in ceramic membranes or a high degree of purification in dense metal membranes, make it possible to create mixed technologies for hydrogen separation and purification
Текстовый файл
AM_Agreement
Published: 2023
Subjects:
Online Access:https://doi.org/10.1016/j.ijhydene.2023.03.345
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=679904

MARC

LEADER 00000naa0a2200000 4500
001 679904
005 20251122071715.0
090 |a 679904 
100 |a 20250424d2023 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Materials and techniques for hydrogen separation from methane-containing gas mixtures   |f Andrey Lider, Viktor Kudiiarov, Nikita Kurdyumov [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 186 tit 
330 |a Because hydrogen is a high-quality, clean energy carrier, it is and will continue to be one of the key elements/fuels to help solve the climate problem. In addition, new chemical production processes and the development of high-efficiency fuel cells require high-purity hydrogen, as it is one of their critical components. The production of hydrogen from natural gas makes it possible to smoothly transition to “green energy”. However, synthetically produced hydrogen contains other impurities and some unreacted substituents such as CO2, N2,CH4, etc. We have reviewed the main technologies for hydrogen purification, such as pressure swing adsorption (PSA), and cryogenic distillation. The focus of the article will be on the description of hydrogen separation, including a membrane module and an electrochemical hydrogen compressor. The scalability of the technology and the high degree of purification make membrane technology a promising method for hydrogen purification and separation. Different properties of membranes, such as high resistance to poisoning in ceramic membranes or a high degree of purification in dense metal membranes, make it possible to create mixed technologies for hydrogen separation and purification 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t International Journal of Hydrogen Energy  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 48, iss. 73  |v P. 28390-28411  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Hydrogen separation 
610 1 |a Membranes 
610 1 |a Metal Hydrides 
610 1 |a Cryogenic Processes 
610 1 |a Electrocatalytic reforming 
610 1 |a Pressure Swing Adsorption 
701 1 |a Lider  |b A. M.  |c Physicist  |c Professor of Tomsk Polytechnic University, Doctor of Technical Sciences  |f 1976-2025  |g Andrey Markovich  |y Tomsk  |9 14743 
701 1 |a Kudiyarov  |b V. N.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1990-  |g Victor Nikolaevich  |y Tomsk  |9 15083 
701 1 |a Kurdyumov  |b N.  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1997-  |g Nikita  |9 22913 
701 0 |a Lyu Jinzhe  |c physicist  |c engineer of Tomsk Polytechnic University  |f 1993-  |9 21926 
701 1 |a Travitsky  |b N.  |g Nakhum 
701 1 |a Hotza  |b D.  |g Dachamir 
801 0 |a RU  |b 63413507  |c 20250424 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.ijhydene.2023.03.345  |z https://doi.org/10.1016/j.ijhydene.2023.03.345 
942 |c CF