Preventing hydrate formation by using artificial intelligence
| Parent link: | Recent Achievements and Prospects of Innovations and Technologies=Достижения и перспективы инноваций и технологий: научный журнал.— .— Керчь: КГМТУ.— 2712-908X Iss. 3 : Proceedings of the XIII All-Russian Research-to-Practice Conference of Students, Postgraduates and Young Scientists, Kerch, April 22, 2024.— 2024.— Р. 152-158 |
|---|---|
| المؤلف الرئيسي: | |
| مؤلفون آخرون: | |
| الملخص: | In the oil and gas industry, the prevention of hydrate formation is paramount to ensuring the safety, efficiency, and reliability of production and transportation processes. Hydrate formation, a complex phenomenon influenced by various environmental and fluid properties, poses significant operational challenges and safety risks. To address these challenges, the integration of machine learning techniques has emerged as a promising approach. Machine learning algorithms analyze vast datasets encompassing temperature, pressure, fluid composition, and geological characteristics to predict hydrate formation conditions. By leveraging advanced analytics, operators can proactively identify and mitigate the risk of hydrate formation, optimize production processes, and enhance operational safety. This article explores the application of machine learning in predicting hydrate formation parameters and discusses its implications for the oil and gas industry Текстовый файл |
| اللغة: | الإنجليزية |
| منشور في: |
2024
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://www.kgmtu.ru/wp-content/uploads/2024/05/22.04.2024_april_Kerch-SevastopolMaketEnglish-Conf.pdf#page=152 |
| التنسيق: | الكتروني فصل الكتاب |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=679782 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 679782 | ||
| 005 | 20251223092048.0 | ||
| 090 | |a 679782 | ||
| 100 | |a 20250421d2024 k||y0rusy50 ba | ||
| 101 | 0 | |a eng |c rus | |
| 102 | |a RU | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i |b e | |
| 182 | 0 | |a b | |
| 183 | 0 | |a cr |2 RDAcarrier | |
| 200 | 1 | |a Preventing hydrate formation by using artificial intelligence |f Angelina K. Terkina, Natalia V. Aksenova | |
| 203 | |a Текст |c электронный |b визуальный | ||
| 283 | |a online_resource |2 RDAcarrier | ||
| 320 | |a References: 4 tit | ||
| 330 | |a In the oil and gas industry, the prevention of hydrate formation is paramount to ensuring the safety, efficiency, and reliability of production and transportation processes. Hydrate formation, a complex phenomenon influenced by various environmental and fluid properties, poses significant operational challenges and safety risks. To address these challenges, the integration of machine learning techniques has emerged as a promising approach. Machine learning algorithms analyze vast datasets encompassing temperature, pressure, fluid composition, and geological characteristics to predict hydrate formation conditions. By leveraging advanced analytics, operators can proactively identify and mitigate the risk of hydrate formation, optimize production processes, and enhance operational safety. This article explores the application of machine learning in predicting hydrate formation parameters and discusses its implications for the oil and gas industry | ||
| 336 | |a Текстовый файл | ||
| 461 | 1 | |t Recent Achievements and Prospects of Innovations and Technologies |l Достижения и перспективы инноваций и технологий |o научный журнал |c Керчь |c Москва |c Севастополь |n КГМТУ |n МПУ |n СевГУ |x 2712-908X | |
| 463 | 1 | |t Iss. 3 : Proceedings of the XIII All-Russian Research-to-Practice Conference of Students, Postgraduates and Young Scientists, Kerch, April 22, 2024 |v Р. 152-158 |d 2024 | |
| 610 | 1 | |a oil and gas production | |
| 610 | 1 | |a neural networks | |
| 610 | 1 | |a artificial intelligence | |
| 610 | 1 | |a machine learning | |
| 610 | 1 | |a hydrate formation | |
| 610 | 1 | |a temperature, pressure | |
| 610 | 1 | |a inhibitor | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 700 | 1 | |a Terkina |b A. K. |g Angelina Konstantinovna |f 2002- |c chemical engineer |c Engineer of Tomsk Polytechnic University |y Tomsk |9 88879 | |
| 701 | 1 | |a Aksenova |b N. V. |c linguist |c Associate Professor of Tomsk Polytechnic University, Candidate of Philology |f 1979- |g Nataliya Valerievna |9 16707 | |
| 801 | 0 | |a RU |b 63413507 |c 20250421 |g RCR | |
| 850 | |a 63413507 | ||
| 856 | 4 | |u https://www.kgmtu.ru/wp-content/uploads/2024/05/22.04.2024_april_Kerch-SevastopolMaketEnglish-Conf.pdf#page=152 |z https://www.kgmtu.ru/wp-content/uploads/2024/05/22.04.2024_april_Kerch-SevastopolMaketEnglish-Conf.pdf#page=152 | |
| 942 | |c CF | ||