Preventing hydrate formation by using artificial intelligence

التفاصيل البيبلوغرافية
Parent link:Recent Achievements and Prospects of Innovations and Technologies=Достижения и перспективы инноваций и технологий: научный журнал.— .— Керчь: КГМТУ.— 2712-908X
Iss. 3 : Proceedings of the XIII All-Russian Research-to-Practice Conference of Students, Postgraduates and Young Scientists, Kerch, April 22, 2024.— 2024.— Р. 152-158
المؤلف الرئيسي: Terkina A. K. Angelina Konstantinovna
مؤلفون آخرون: Aksenova N. V. Nataliya Valerievna
الملخص:In the oil and gas industry, the prevention of hydrate formation is paramount to ensuring the safety, efficiency, and reliability of production and transportation processes. Hydrate formation, a complex phenomenon influenced by various environmental and fluid properties, poses significant operational challenges and safety risks. To address these challenges, the integration of machine learning techniques has emerged as a promising approach. Machine learning algorithms analyze vast datasets encompassing temperature, pressure, fluid composition, and geological characteristics to predict hydrate formation conditions. By leveraging advanced analytics, operators can proactively identify and mitigate the risk of hydrate formation, optimize production processes, and enhance operational safety. This article explores the application of machine learning in predicting hydrate formation parameters and discusses its implications for the oil and gas industry
Текстовый файл
اللغة:الإنجليزية
منشور في: 2024
الموضوعات:
الوصول للمادة أونلاين:https://www.kgmtu.ru/wp-content/uploads/2024/05/22.04.2024_april_Kerch-SevastopolMaketEnglish-Conf.pdf#page=152
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=679782

MARC

LEADER 00000naa0a2200000 4500
001 679782
005 20251223092048.0
090 |a 679782 
100 |a 20250421d2024 k||y0rusy50 ba 
101 0 |a eng  |c rus 
102 |a RU 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Preventing hydrate formation by using artificial intelligence   |f Angelina K. Terkina, Natalia V. Aksenova 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
320 |a References: 4 tit 
330 |a In the oil and gas industry, the prevention of hydrate formation is paramount to ensuring the safety, efficiency, and reliability of production and transportation processes. Hydrate formation, a complex phenomenon influenced by various environmental and fluid properties, poses significant operational challenges and safety risks. To address these challenges, the integration of machine learning techniques has emerged as a promising approach. Machine learning algorithms analyze vast datasets encompassing temperature, pressure, fluid composition, and geological characteristics to predict hydrate formation conditions. By leveraging advanced analytics, operators can proactively identify and mitigate the risk of hydrate formation, optimize production processes, and enhance operational safety. This article explores the application of machine learning in predicting hydrate formation parameters and discusses its implications for the oil and gas industry 
336 |a Текстовый файл 
461 1 |t Recent Achievements and Prospects of Innovations and Technologies  |l Достижения и перспективы инноваций и технологий  |o научный журнал  |c Керчь  |c Москва  |c Севастополь  |n КГМТУ  |n МПУ  |n СевГУ  |x 2712-908X 
463 1 |t Iss. 3 : Proceedings of the XIII All-Russian Research-to-Practice Conference of Students, Postgraduates and Young Scientists, Kerch, April 22, 2024  |v Р. 152-158  |d 2024 
610 1 |a oil and gas production 
610 1 |a neural networks 
610 1 |a artificial intelligence 
610 1 |a machine learning 
610 1 |a hydrate formation 
610 1 |a temperature, pressure 
610 1 |a inhibitor 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
700 1 |a Terkina  |b A. K.  |g Angelina Konstantinovna  |f 2002-  |c chemical engineer  |c Engineer of Tomsk Polytechnic University  |y Tomsk  |9 88879 
701 1 |a Aksenova  |b N. V.  |c linguist  |c Associate Professor of Tomsk Polytechnic University, Candidate of Philology  |f 1979-  |g Nataliya Valerievna  |9 16707 
801 0 |a RU  |b 63413507  |c 20250421  |g RCR 
850 |a 63413507 
856 4 |u https://www.kgmtu.ru/wp-content/uploads/2024/05/22.04.2024_april_Kerch-SevastopolMaketEnglish-Conf.pdf#page=152  |z https://www.kgmtu.ru/wp-content/uploads/2024/05/22.04.2024_april_Kerch-SevastopolMaketEnglish-Conf.pdf#page=152 
942 |c CF