Numerical contact line behavior prediction for droplet-wall impact by the modified Hoffman-function-based dynamic contact angle model

Bibliographic Details
Parent link:International Communications in Heat and Mass Transfer.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 160.— 2025.— Article number 108372, 12 p.
Other Authors: Vozhakov I. S. Ivan Sergeevich, Misyura S. Ya. Sergey Yakovlevich, Shain A. M. Aleksandr Mikhaylovich, Mullyadzhanov R. I. Rustam Ilkhamovich, Piskunov M. V. Maksim Vladimirovich, Strizhak P. A. Pavel Alexandrovich
Summary:Title screen
The droplet-wall impact phenomenon is observed in numerous applications such as spray cooling, coatings, wetting, and inkjet printing. To date, there are still unresolved issues related to the effect of wettability and hysteresis on droplet spreading along a wall and rim fingering. This research deals with the effects of dynamic and static contact angles on droplet spreading evolution, as well as with droplet rim fingering characterization. Experiments and direct numerical simulations are performed in a wide range of Weber numbers (We = 1–375). At high We numbers, the droplet rim loses stability and begins to deform, forming fingers. The critical disturbances resulting in the formation of fingers occur in times of around 1 ms, which are significantly smaller than those typical of maximum droplet spreading. Moreover, a certain shape of the droplet meniscus is shown to be necessary for the growth of fingers. When the contact line receding takes place, the contact angle depends only on the initial contact line acceleration. Considering the contact angle hysteresis and its dependence on We ensures a better agreement with experimental data during the droplet advancing-to-receding transition and the receding phase
Текстовый файл
AM_Agreement
Published: 2025
Subjects:
Online Access:https://doi.org/10.1016/j.icheatmasstransfer.2024.108372
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=679677

MARC

LEADER 00000naa0a2200000 4500
001 679677
005 20250415114918.0
090 |a 679677 
100 |a 20250415d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Numerical contact line behavior prediction for droplet-wall impact by the modified Hoffman-function-based dynamic contact angle model  |f I. S. Vozhakov, S. Y. Misyura, A. M. Shain [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 53 tit 
330 |a The droplet-wall impact phenomenon is observed in numerous applications such as spray cooling, coatings, wetting, and inkjet printing. To date, there are still unresolved issues related to the effect of wettability and hysteresis on droplet spreading along a wall and rim fingering. This research deals with the effects of dynamic and static contact angles on droplet spreading evolution, as well as with droplet rim fingering characterization. Experiments and direct numerical simulations are performed in a wide range of Weber numbers (We = 1–375). At high We numbers, the droplet rim loses stability and begins to deform, forming fingers. The critical disturbances resulting in the formation of fingers occur in times of around 1 ms, which are significantly smaller than those typical of maximum droplet spreading. Moreover, a certain shape of the droplet meniscus is shown to be necessary for the growth of fingers. When the contact line receding takes place, the contact angle depends only on the initial contact line acceleration. Considering the contact angle hysteresis and its dependence on We ensures a better agreement with experimental data during the droplet advancing-to-receding transition and the receding phase 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t International Communications in Heat and Mass Transfer  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 160  |v Article number 108372, 12 p.  |d 2025 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a Droplet-wall impact 
610 1 |a Droplet contact line 
610 1 |a Droplet contact angle 
610 1 |a Fingering 
610 1 |a Contact angle hysteresis 
701 1 |a Vozhakov  |b I. S.  |g Ivan Sergeevich 
701 1 |a Misyura  |b S. Ya.  |c specialist in the field of power engineering  |c leading researcher of Tomsk Polytechnic University, candidate of technical sciences  |f 1964-  |g Sergey Yakovlevich  |9 21039 
701 1 |a Shain  |b A. M.  |g Aleksandr Mikhaylovich 
701 1 |a Mullyadzhanov  |b R. I.  |g Rustam Ilkhamovich 
701 1 |a Piskunov  |b M. V.  |c specialist in the field of thermal engineering  |c engineer of Tomsk Polytechnic University  |f 1991-  |g Maksim Vladimirovich  |9 17691 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |9 15117 
801 0 |a RU  |b 63413507  |c 20250415 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.icheatmasstransfer.2024.108372  |z https://doi.org/10.1016/j.icheatmasstransfer.2024.108372 
942 |c CF