Quasiparticle solutions for the nonlocal NLSE with an anti-Hermitian term in semiclassical approximation

Detalles Bibliográficos
Parent link:European Physical Journal Plus.— .— New York: Springer Science+Business Media LLC.
Vol. 140.— 2025.— Article number 246, 23 p.
Autor Principal: Kulagin A. E. Anton Evgenievich
Outros autores: Shapovalov A. V. Aleksandr Vasiljevich
Summary:Title screen
We deal with the n-dimensional nonlinear Schrödinger equation (NLSE) with a cubic nonlocal nonlinearity and an anti-Hermitian term, which is widely used model for the study of open quantum system. We construct asymptotic solutions to the Cauchy problem for such equation within the formalism of semiclassical approximation based on the Maslov complex germ method. Our solutions are localized in the neighbourhood of a few points for every given time, i.e. form some spatial pattern. The localization points move over trajectories that are associated with the dynamics of semiclassical quasiparticles. The Cauchy problem for the original NLSE is reduced to the system of ordinary differential equations and auxiliary linear equations. The semiclassical nonlinear evolution operator is derived for the NLSE. The general formalism is applied to the specific one-dimensional and two-dimensional NLSEs with a periodic trap potential, dipole-dipole interaction, and phenomenological damping. It is shown that the long-range interactions in such model, which are considered through the interaction of quasiparticles in our approach, can lead to drastic changes in the behaviour of our asymptotic solutions
Текстовый файл
AM_Agreement
Publicado: 2025
Subjects:
Acceso en liña:https://doi.org/10.1140/epjp/s13360-025-06183-6
Formato: Electrónico Capítulo de libro
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=679571

MARC

LEADER 00000naa0a2200000 4500
001 679571
005 20250408114806.0
090 |a 679571 
100 |a 20250408d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Quasiparticle solutions for the nonlocal NLSE with an anti-Hermitian term in semiclassical approximation  |f Anton Kulagin, Alexander Shapovalov  
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 49 tit 
330 |a We deal with the n-dimensional nonlinear Schrödinger equation (NLSE) with a cubic nonlocal nonlinearity and an anti-Hermitian term, which is widely used model for the study of open quantum system. We construct asymptotic solutions to the Cauchy problem for such equation within the formalism of semiclassical approximation based on the Maslov complex germ method. Our solutions are localized in the neighbourhood of a few points for every given time, i.e. form some spatial pattern. The localization points move over trajectories that are associated with the dynamics of semiclassical quasiparticles. The Cauchy problem for the original NLSE is reduced to the system of ordinary differential equations and auxiliary linear equations. The semiclassical nonlinear evolution operator is derived for the NLSE. The general formalism is applied to the specific one-dimensional and two-dimensional NLSEs with a periodic trap potential, dipole-dipole interaction, and phenomenological damping. It is shown that the long-range interactions in such model, which are considered through the interaction of quasiparticles in our approach, can lead to drastic changes in the behaviour of our asymptotic solutions 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t European Physical Journal Plus  |c New York  |n Springer Science+Business Media LLC. 
463 1 |t Vol. 140  |v Article number 246, 23 p.  |d 2025 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a quantum system 
610 1 |a Schrödinger equation 
610 1 |a quasiparticles 
700 1 |a Kulagin  |b A. E.  |c mathematician  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1992-  |g Anton Evgenievich  |9 18885 
701 1 |a Shapovalov  |b A. V.  |g Aleksandr Vasiljevich 
801 0 |a RU  |b 63413507  |c 20250408 
850 |a 63413507 
856 4 |u https://doi.org/10.1140/epjp/s13360-025-06183-6  |z https://doi.org/10.1140/epjp/s13360-025-06183-6 
942 |c CF