Plasma synthesis of Ti–O and carbon nanoparticles and their modification with an anionic surfactant to obtain stable dispersions

Bibliografiske detaljer
Parent link:New Journal of Chemistry.— .— London: Royal Society of Chemistry
Vol. 48, iss. 31.— 2024.— P. 14039-14048
Andre forfattere: Zelentsov D. O. Dmitry Olegovich, Petrova Yu. Yu. Yuliya Yurjevna, Egorova V. V. Valentina Viktorovna, Povalyaev P. V. Pavel Vadimovich, Frantsina E. V. Evgeniya Vladimirovna, Ivanova A. A. Anastasiya Aleksandrovna, Cheremisin A. N. Aleksey Nikolaevich, Sivkov A. A. Aleksandr Anatolyevich, Shanenkov I. I. Ivan Igorevich, Nassyrbayev (Nasyrbaev) A. Artur, Nikitin D. S. Dmitry Sergeevich
Summary:Title screen
Mixtures of nanoparticles and surfactants are attracting researchers’ interest from around the world for the development of chemically enhanced oil recovery. Nanoparticles modified with surfactants are able to adsorb at the oil–water interface reducing the interfacial tension or adsorb at the reservoir rock surface changing its wettability from oil-wet to water-wet. This change leads to an oil recovery increase. Therefore, in this work, we obtained Ti–O Magneli phases and carbon nanoparticles via the plasma dynamic method and in an electric arc, respectively. Subsequently, these nanoparticles were modified with an anionic surfactant and characterized by Fourier-transform infrared spectroscopy, X-ray fluorescence, thermogravimetric analysis, differential scanning calorimetry, and scanning and transmission electron microscopy. The stability and properties of dispersions were studied by tensiometry and dynamic and electrophoretic light scattering methods. It was shown that Ti–O Magneli phases (10–180 nm) and carbon (60–80 nm) nanoparticles modified in sodium dodecyl sulfate solutions formed stable dispersions in water. Furthermore, Ti–O nanoparticles and modified carbon nanoparticles effectively reduced the interfacial tension at the n-hexane/water interface
Текстовый файл
AM_Agreement
Udgivet: 2024
Fag:
Online adgang:https://doi.org/10.1039/D4NJ01622J
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=678290

MARC

LEADER 00000naa0a2200000 4500
001 678290
005 20250123113303.0
090 |a 678290 
100 |a 20250123d2024 k||y0rusy50 ba 
101 0 |a eng 
102 |a GB 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Plasma synthesis of Ti–O and carbon nanoparticles and their modification with an anionic surfactant to obtain stable dispersions  |f Dmitry Olegovich Zelentsov, Yuliya Yurievna Petrova, Valentina Viktorovna Egorova [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
330 |a Mixtures of nanoparticles and surfactants are attracting researchers’ interest from around the world for the development of chemically enhanced oil recovery. Nanoparticles modified with surfactants are able to adsorb at the oil–water interface reducing the interfacial tension or adsorb at the reservoir rock surface changing its wettability from oil-wet to water-wet. This change leads to an oil recovery increase. Therefore, in this work, we obtained Ti–O Magneli phases and carbon nanoparticles via the plasma dynamic method and in an electric arc, respectively. Subsequently, these nanoparticles were modified with an anionic surfactant and characterized by Fourier-transform infrared spectroscopy, X-ray fluorescence, thermogravimetric analysis, differential scanning calorimetry, and scanning and transmission electron microscopy. The stability and properties of dispersions were studied by tensiometry and dynamic and electrophoretic light scattering methods. It was shown that Ti–O Magneli phases (10–180 nm) and carbon (60–80 nm) nanoparticles modified in sodium dodecyl sulfate solutions formed stable dispersions in water. Furthermore, Ti–O nanoparticles and modified carbon nanoparticles effectively reduced the interfacial tension at the n-hexane/water interface 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t New Journal of Chemistry  |c London  |n Royal Society of Chemistry 
463 1 |t Vol. 48, iss. 31  |v P. 14039-14048  |d 2024 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a nanoparticles 
610 1 |a surfactants 
701 1 |a Zelentsov  |b D. O.  |g Dmitry Olegovich 
701 1 |a Petrova  |b Yu. Yu.  |g Yuliya Yurjevna 
701 1 |a Egorova  |b V. V.  |g Valentina Viktorovna 
701 1 |a Povalyaev  |b P. V.   |c specialist in the field of automatic control  |c senior laboratory assistant, junior researcher at Tomsk Polytechnic University  |f 1997-  |g Pavel Vadimovich  |9 22921 
701 1 |a Frantsina  |b E. V.  |c Chemical Engineer  |c Associate Professor of Tomsk Polytechnic University, Candidate of technical sciences  |f 1985-  |g Evgeniya Vladimirovna  |9 16193 
701 1 |a Ivanova  |b A. A.  |g Anastasiya Aleksandrovna 
701 1 |a Cheremisin  |b A. N.  |g Aleksey Nikolaevich 
701 1 |a Sivkov  |b A. A.  |c Specialist in the field of electric power engineering  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1951-  |g Aleksandr Anatolyevich  |9 16262 
701 1 |a Shanenkov  |b I. I.  |c specialist in the field of electric power engineering  |c Associate Professor of the Department of Tomsk Polytechnic University, Candidate of Sciences  |f 1990-  |g Ivan Igorevich  |9 16728 
701 1 |a Nassyrbayev (Nasyrbaev)  |b A.  |c Specialist in the field of electric power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1998-  |g Artur  |9 22370 
701 1 |a Nikitin  |b D. S.  |c specialist in the field of electric power engineering  |c Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |f 1991-  |g Dmitry Sergeevich  |9 18802 
801 0 |a RU  |b 63413507  |c 20250123 
850 |a 63413507 
856 4 |u https://doi.org/10.1039/D4NJ01622J  |z https://doi.org/10.1039/D4NJ01622J 
942 |c CF