Optimization of 3D Printing Parameters of High Viscosity PEEK/30GF Composites

Bibliographic Details
Parent link:Polymers.— .— Basel: MDPI AG
Vol. 16, iss. 18.— 2024.— Article number 2601, 25 p.
Corporate Author: National Research Tomsk Polytechnic University (570)
Other Authors: Stepanov Dmitry Yurjevich D. Yu., Dontsov (Doncov) Yu. Yuriy Vladimirovich, Panin S. V. Sergey Viktorovich, Buslovich D. G. Dmitry Gennadjevich, Aleksenko V. O. Vladislav Olegovich, Bochkareva Svetlana Alekseevna S. A., Batranin A. V. Andrey Viktorovich, Kosmachev Pavel Vladimirovich P. V.
Summary:Title screen
The aim of this study was to optimize a set of technological parameters (travel speed, extruder temperature, and extrusion rate) for 3D printing with a PEEK-based composite reinforced with 30 wt.% glass fibers (GFs). For this purpose, both Taguchi and finite element methods (FEM) were utilized. The artificial neural networks (ANNs) were implemented for computer simulation of full-scale experiments. Computed tomography of the additively manufactured (AM) samples showed that the optimal 3D printing parameters were the extruder temperature of 460 °C, the travel speed of 20 mm/min, and the extrusion rate of 4 rpm (the microextruder screw rotation speed). These values correlated well with those obtained by computer simulation using the ANNs. In such cases, the homogeneous micro- and macro-structures were formed with minimal sample distortions and porosity levels within 10 vol.% of both structures. The most likely reason for porosity was the expansion of the molten polymer when it had been squeezed out from the microextruder nozzle. It was concluded that the mechanical properties of such samples can be improved both by changing the 3D printing strategy to ensure the preferential orientation of GFs along the building direction and by reducing porosity via post-printing treatment or ultrasonic compaction
Текстовый файл
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.3390/polym16182601
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=677207

MARC

LEADER 00000naa0a2200000 4500
001 677207
005 20241206102640.0
090 |a 677207 
100 |a 20241206d2024 k||y0rusy50 ba 
101 1 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a a   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Optimization of 3D Printing Parameters of High Viscosity PEEK/30GF Composites  |f Dmitry Yu. Stepanov, Yuri V. Dontsov, Sergey V. Panin [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 41 tit 
330 |a The aim of this study was to optimize a set of technological parameters (travel speed, extruder temperature, and extrusion rate) for 3D printing with a PEEK-based composite reinforced with 30 wt.% glass fibers (GFs). For this purpose, both Taguchi and finite element methods (FEM) were utilized. The artificial neural networks (ANNs) were implemented for computer simulation of full-scale experiments. Computed tomography of the additively manufactured (AM) samples showed that the optimal 3D printing parameters were the extruder temperature of 460 °C, the travel speed of 20 mm/min, and the extrusion rate of 4 rpm (the microextruder screw rotation speed). These values correlated well with those obtained by computer simulation using the ANNs. In such cases, the homogeneous micro- and macro-structures were formed with minimal sample distortions and porosity levels within 10 vol.% of both structures. The most likely reason for porosity was the expansion of the molten polymer when it had been squeezed out from the microextruder nozzle. It was concluded that the mechanical properties of such samples can be improved both by changing the 3D printing strategy to ensure the preferential orientation of GFs along the building direction and by reducing porosity via post-printing treatment or ultrasonic compaction 
336 |a Текстовый файл 
461 1 |t Polymers  |c Basel  |n MDPI AG 
463 1 |t Vol. 16, iss. 18  |v Article number 2601, 25 p.  |d 2024 
610 1 |a ANN 
610 1 |a PEEK 
610 1 |a glass fiber 
610 1 |a polymer matrix composite (PMC) 
610 1 |a FDM 
610 1 |a optimization 
610 1 |a Taguchi method 
610 1 |a additive manufacturing (AM) 
610 1 |a computed micro-tomography (micro-CT) 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Stepanov  |g Dmitry Yurjevich  |b D. Yu. 
701 1 |a Dontsov (Doncov)  |b Yu.  |c Specialist in the field of material science  |c Engineer of Tomsk Polytechnic University  |f 1982-  |g Yuriy Vladimirovich  |9 20727 
701 1 |a Panin  |b S. V.  |c specialist in the field of material science  |c Professor of Tomsk Polytechnic University, Doctor of technical sciences  |f 1971-  |g Sergey Viktorovich  |9 16758 
701 1 |a Buslovich  |b D. G.  |c specialist in material science  |c assistant of Tomsk Polytechnic University  |f 1993-  |g Dmitry Gennadjevich  |9 21238 
701 1 |a Aleksenko  |b V. O.  |c Specialist in the field of material science  |c Engineer Tomsk Polytechnic University  |f 1991-  |g Vladislav Olegovich  |9 20402 
701 1 |a Bochkareva  |g Svetlana Alekseevna  |b S. A. 
701 1 |a Batranin  |b A. V.  |c Specialist in the field of welding production  |c Assistant of Tomsk Polytechnic University  |f 1980-  |g Andrey Viktorovich  |9 16592 
701 1 |a Kosmachev  |g Pavel Vladimirovich  |b P. V. 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197  |4 570 
801 0 |a RU  |b 63413507  |c 20241206 
850 |a 63413507 
856 4 |u https://doi.org/10.3390/polym16182601  |z https://doi.org/10.3390/polym16182601 
942 |c CF