Hybrid Machine-Learning Model for Accurate Prediction of Filtration Volume in Water-Based Drilling Fluids

Détails bibliographiques
Parent link:Applied Sciences.— .— Basel: MDPI AG
Vol. 14, iss. 19.— 2024.— Article number 9035, 23 p.
Collectivité auteur: National Research Tomsk Polytechnic University (570)
Autres auteurs: Davoodi Sh. Shadfar, Al-Shargabi M. A. T. S. Mokhammed Abdulsalam Takha Sallam, Rukavishnikov V. S. Valery Sergeevich, Mekhrad Mokhammad M., Wood David D. A., Al-Rubaii Mohammed M.
Résumé:Title screen
Accurately predicting the filtration volume (FV) in drilling fluid (DF) is crucial for avoiding drilling problems such as a stuck pipe and minimizing DF impacts on formations during drilling. Traditional FV measurement relies on human-centric experimental evaluation, which is time-consuming. Recently, machine learning (ML) proved itself as a promising approach for FV prediction. However, existing ML methods require time-consuming input variables, hindering the semi-real-time monitoring of the FV. Therefore, employing radial basis function neural network (RBFNN) and multilayer extreme learning machine (MELM) algorithms integrated with the growth optimizer (GO), predictive hybrid ML (HML) models are developed to reliably predict the FV using only two easy-to-measure input variables: drilling fluid density (FD) and Marsh funnel viscosity (MFV). A 1260-record dataset from seventeen wells drilled in two oil and gas fields (Iran) was used to evaluate the models. Results showed the superior performance of the RBFNN-GO model, achieving a root-mean-square error (RMSE) of 0.6396 mL. Overfitting index (OFI), score, dependency, and Shapley additive explanations (SHAP) analysis confirmed the superior FV prediction performance of the RBFNN-GO model. In addition, the low RMSE (0.3227 mL) of the RBFNN-NGO model on unseen data from a different well within the studied fields confirmed the strong generalizability of this rapid and novel FV prediction method
Текстовый файл
Langue:anglais
Publié: 2024
Sujets:
Accès en ligne:https://doi.org/10.3390/app14199035
Format: Électronique Chapitre de livre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=677205

MARC

LEADER 00000naa0a2200000 4500
001 677205
005 20251209093809.0
090 |a 677205 
100 |a 20241206d2024 k||y0rusy50 ba 
101 1 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Hybrid Machine-Learning Model for Accurate Prediction of Filtration Volume in Water-Based Drilling Fluids  |f Shadfar Davoodi, Mohammed Al-Rubaii, David A. Wood [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 60 tit 
330 |a Accurately predicting the filtration volume (FV) in drilling fluid (DF) is crucial for avoiding drilling problems such as a stuck pipe and minimizing DF impacts on formations during drilling. Traditional FV measurement relies on human-centric experimental evaluation, which is time-consuming. Recently, machine learning (ML) proved itself as a promising approach for FV prediction. However, existing ML methods require time-consuming input variables, hindering the semi-real-time monitoring of the FV. Therefore, employing radial basis function neural network (RBFNN) and multilayer extreme learning machine (MELM) algorithms integrated with the growth optimizer (GO), predictive hybrid ML (HML) models are developed to reliably predict the FV using only two easy-to-measure input variables: drilling fluid density (FD) and Marsh funnel viscosity (MFV). A 1260-record dataset from seventeen wells drilled in two oil and gas fields (Iran) was used to evaluate the models. Results showed the superior performance of the RBFNN-GO model, achieving a root-mean-square error (RMSE) of 0.6396 mL. Overfitting index (OFI), score, dependency, and Shapley additive explanations (SHAP) analysis confirmed the superior FV prediction performance of the RBFNN-GO model. In addition, the low RMSE (0.3227 mL) of the RBFNN-NGO model on unseen data from a different well within the studied fields confirmed the strong generalizability of this rapid and novel FV prediction method 
336 |a Текстовый файл 
461 1 |t Applied Sciences  |n MDPI AG  |c Basel 
463 1 |t Vol. 14, iss. 19  |v Article number 9035, 23 p.  |d 2024 
610 1 |a filtration volume 
610 1 |a fluid density 
610 1 |a hybridized machine learning 
610 1 |a growth optimizer 
610 1 |a Marsh funnel viscosity 
610 1 |a semi real-time filtration monitoring 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Davoodi  |b Sh.  |c specialist in the field of petroleum engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1990-  |g Shadfar  |9 22200 
701 1 |a Al-Shargabi  |b M. A. T. S.  |c specialist in the field of petroleum engineering  |c Engineer of Tomsk Polytechnic University  |f 1993-  |g Mokhammed Abdulsalam Takha Sallam  |9 22768 
701 1 |a Rukavishnikov  |b V. S.  |c Director of the Center for Training and Retraining of Oil and Gas Specialists, Associate Professor of Tomsk Polytechnic University, Candidate of Technical Sciences  |c Engineer of Tomsk Polytechnic University  |f 1984-  |g Valery Sergeevich  |9 17614 
701 1 |a Mekhrad  |g Mokhammad  |b M. 
701 1 |a Wood  |g David  |b D. A. 
701 1 |a Al-Rubaii  |g Mohammed  |b M. 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197  |4 570 
801 0 |a RU  |b 63413507  |c 20241206 
850 |a 63413507 
856 4 |u https://doi.org/10.3390/app14199035  |z https://doi.org/10.3390/app14199035 
942 |c CF