Antibacterial double-layer calcium phosphate/chitosan composite coating on metal implants for tissue engineering

Bibliografiske detaljer
Parent link:Colloids and Surfaces A: Physicochemical and Engineering Aspects.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 705, pt. 2.— 2025.— Article number 135652, 12 p.
Institution som forfatter: National Research Tomsk Polytechnic University (570)
Andre forfattere: Kozelskaya A. I. Anna Ivanovna, Frue A. K. Andreas Kristian, Rutkowski S. Sven, Goreninsky (Goreninskii) S. I. Semen Igorevich, Verzunova K. N. Kseniya Nikolaevna, Soldatova E. A. Elena Aleksandrovna, Dorozhko E. V. Elena Vladimirovna, Frueh J. C. Johannes Christoph, Bakina O. V. Olga Vasiljevna, Buldakov M. A. Mikhail Aleksandrovich, Choynzonov E. L. Evgeny Lkhamatsyrenovich, Brizhan L. K. Leonid Karlovich, Kerimov A. A. Artur Aslanovich, Khominets I. V. Igor, Davydov D. V. Denis Vladimirovich
Summary:Title screen
In this study, four different promising two-layer composite coatings on titanium substrates with antibacterial properties were investigated. Two different types of antibacterial agents were used to impart antibacterial properties to the coatings: antibiotic amikacin (in three different concentrations) and zinc. Chitosan, which also has antibacterial properties, was used as a carrier layer for amikacin on a calcium phosphate coating incorporating zinc. This combination should enable long-term antibacterial properties of a bone implant and thus prevent potential complications during wound healing due to bacterial contamination. To examine the physico-chemical properties of the samples, the elemental, chemical and phase compositions, the thickness and the wettability of the coatings were investigated. The release of amikacin from the chitosan coatings was investigated using high-performance liquid chromatography. Antibacterial activity of the prepared coatings was evaluated against five hospital bacteria strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Klebsiella pneumoniae) and one strain from the microbial strain collection (methicillin-resistant Staphylococcus aureus, ATCC 43300). To investigate the cell toxicity of the composite coating, cell adhesion, proliferation and osteogenic differentiation were tested with mesenchymal stem cells. According to the results, the composite coatings with an amikacin concentration of 5.0 and 7.5 percent by weight have the best biological and antibacterial properties
Текстовый файл
AM_Agreement
Sprog:engelsk
Udgivet: 2025
Fag:
Online adgang:https://doi.org/10.1016/j.colsurfa.2024.135652
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=676882

MARC

LEADER 00000naa0a2200000 4500
001 676882
005 20241122101231.0
090 |a 676882 
100 |a 20241122d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Antibacterial double-layer calcium phosphate/chitosan composite coating on metal implants for tissue engineering  |f Anna I. Kozelskaya, Andreas Früh, Sven Rutkowski [et al.] 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 90 tit. 
330 |a In this study, four different promising two-layer composite coatings on titanium substrates with antibacterial properties were investigated. Two different types of antibacterial agents were used to impart antibacterial properties to the coatings: antibiotic amikacin (in three different concentrations) and zinc. Chitosan, which also has antibacterial properties, was used as a carrier layer for amikacin on a calcium phosphate coating incorporating zinc. This combination should enable long-term antibacterial properties of a bone implant and thus prevent potential complications during wound healing due to bacterial contamination. To examine the physico-chemical properties of the samples, the elemental, chemical and phase compositions, the thickness and the wettability of the coatings were investigated. The release of amikacin from the chitosan coatings was investigated using high-performance liquid chromatography. Antibacterial activity of the prepared coatings was evaluated against five hospital bacteria strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Klebsiella pneumoniae) and one strain from the microbial strain collection (methicillin-resistant Staphylococcus aureus, ATCC 43300). To investigate the cell toxicity of the composite coating, cell adhesion, proliferation and osteogenic differentiation were tested with mesenchymal stem cells. According to the results, the composite coatings with an amikacin concentration of 5.0 and 7.5 percent by weight have the best biological and antibacterial properties 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Colloids and Surfaces A: Physicochemical and Engineering Aspects  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 705, pt. 2  |v Article number 135652, 12 p.  |d 2025 
610 1 |a Surface modification 
610 1 |a Micro-arc oxidation 
610 1 |a Chitosan 
610 1 |a Amikacin 
610 1 |a Composite coatings 
610 1 |a Antibacterial properties 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Kozelskaya  |b A. I.  |c physicist  |c Researcher at Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1985-  |g Anna Ivanovna  |9 21044 
701 1 |a Frue  |b A. K.  |g Andreas Kristian 
701 1 |a Rutkowski  |b S.  |c chemist  |c Research Engineer, Tomsk Polytechnic University, Ph.D  |f 1981-  |g Sven  |9 22409 
701 1 |a Goreninsky (Goreninskii)  |b S. I.  |c chemist  |c engineer of Tomsk Polytechnic University  |f 1993-  |g Semen Igorevich  |9 21234 
701 1 |a Verzunova  |b K. N.  |g Kseniya Nikolaevna  |9 22939 
701 1 |a Soldatova  |b E. A.  |c Physicist  |c Engineer of Tomsk Polytechnic University  |f 1992-  |g Elena Aleksandrovna  |9 22048 
701 1 |a Dorozhko  |b E. V.  |c chemist  |c Engineer of Tomsk Polytechnic University  |f 1979-  |g Elena Vladimirovna  |9 16175 
701 1 |a Frueh  |b J. C.  |g Johannes Christoph 
701 1 |a Bakina  |b O. V.  |g Olga Vasiljevna 
701 1 |a Buldakov  |b M. A.  |g Mikhail Aleksandrovich 
701 1 |a Choynzonov  |b E. L.  |g Evgeny Lkhamatsyrenovich 
701 1 |a Brizhan  |b L. K.  |g Leonid Karlovich 
701 1 |a Kerimov  |b A. A.  |g Artur Aslanovich 
701 1 |a Khominets  |b I. V.  |g Igor 
701 1 |a Davydov  |b D. V.  |g Denis Vladimirovich 
712 0 2 |a National Research Tomsk Polytechnic University  |9 27197  |4 570 
801 0 |a RU  |b 63413507  |c 20241122  |g RCR 
856 4 |u https://doi.org/10.1016/j.colsurfa.2024.135652  |z https://doi.org/10.1016/j.colsurfa.2024.135652 
942 |c CF