Methane hydrate regasification to intensify the combustion of low-rank coal fuels

Bibliographic Details
Parent link:Fuel.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 381, pt. 2.— 2025.— Article number 133432, 19 p.
Corporate Author: National Research Tomsk Polytechnic University (570)
Other Authors: Vinogrodskiy K. Kirill, Nagibin P. S. Pavel Sergeevich, Misyura S. Ya. Sergey Yakovlevich, Morozov V. S. Vladimir Sergeevich, Shlegel N. E. Nikita Evgenjevich, Strizhak P. A. Pavel Alexandrovich
Summary:Title screen.
Waste-to-energy is an effective method of coal waste recovery and one of the possible solutions to the hydrocarbon depletion problem. The recovery of coal processing wastes and combustion of low-rank coal fuels involve technological challenges associated with long ignition delay, high toxic gas emissions, lower combustion zone temperature, and, hence, lower degree of combustion. To overcome these challenges, we propose a novel approach to intensify the combustion of coal slime and coal using hydrate gas. Hydrate contains methane and water. When heated, hydrate dissociates into water vapor and methane, which makes a promising gas–vapor mixture for energy generation. Using the research findings, we derived the effective conditions of hydrate regasification for the continuous supply of methane to the combustion chamber. The mathematical expressions formulated in this research relate the main characteristics of heat and mass transfer in the dissociation unit and in the combustion chamber. We also determined the regasification rates of gas hydrate exposed to electric heating in a system with a heat transfer fluid. A technological solution proposed on the basis of the research findings will increase the energy efficiency of coal processing waste recovery and reduce the anthropogenic emissions.
AM_Agreement
Language:English
Published: 2025
Subjects:
Online Access:https://doi.org/10.1016/j.fuel.2024.133432
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=676349

MARC

LEADER 00000nla0a2200000 4500
001 676349
005 20241106120306.0
090 |a 676349 
100 |a 20241106a2025 k||y0engy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Methane hydrate regasification to intensify the combustion of low-rank coal fuels  |f K. Vinogrodskiy, P. S. Nagibin, S. Ya. Misyura [et al.] 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen. 
320 |a References: 87 tit 
330 |a Waste-to-energy is an effective method of coal waste recovery and one of the possible solutions to the hydrocarbon depletion problem. The recovery of coal processing wastes and combustion of low-rank coal fuels involve technological challenges associated with long ignition delay, high toxic gas emissions, lower combustion zone temperature, and, hence, lower degree of combustion. To overcome these challenges, we propose a novel approach to intensify the combustion of coal slime and coal using hydrate gas. Hydrate contains methane and water. When heated, hydrate dissociates into water vapor and methane, which makes a promising gas–vapor mixture for energy generation. Using the research findings, we derived the effective conditions of hydrate regasification for the continuous supply of methane to the combustion chamber. The mathematical expressions formulated in this research relate the main characteristics of heat and mass transfer in the dissociation unit and in the combustion chamber. We also determined the regasification rates of gas hydrate exposed to electric heating in a system with a heat transfer fluid. A technological solution proposed on the basis of the research findings will increase the energy efficiency of coal processing waste recovery and reduce the anthropogenic emissions. 
371 0 |a AM_Agreement 
461 1 |t Fuel  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 381, pt. 2  |d 2025  |v Article number 133432, 19 p. 
610 1 |a Gas hydrate 
610 1 |a Synthesis 
610 1 |a Regasification 
610 1 |a Waste to energy 
610 1 |a Low-rank coal fuels 
610 1 |a Anthropogenic gas emissions 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Vinogrodskiy  |b K.  |g Kirill 
701 1 |a Nagibin  |b P. S.  |g Pavel Sergeevich 
701 1 |a Misyura  |b S. Ya.  |c specialist in the field of power engineering  |c leading researcher of Tomsk Polytechnic University, candidate of technical sciences  |f 1964-  |g Sergey Yakovlevich  |9 21039 
701 1 |a Morozov  |b V. S.  |g Vladimir Sergeevich 
701 1 |a Shlegel  |b N. E.  |c specialist in the field of heat and power engineering  |c Research Engineer of Tomsk Polytechnic University  |f 1995-  |g Nikita Evgenjevich  |9 22331 
701 1 |a Strizhak  |b P. A.  |c Specialist in the field of heat power energy  |c Doctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)  |f 1985-  |g Pavel Alexandrovich  |9 15117 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197  |4 570 
801 0 |a RU  |b 63413507  |c 20241106  |g RCR 
856 4 |u https://doi.org/10.1016/j.fuel.2024.133432  |z https://doi.org/10.1016/j.fuel.2024.133432 
942 |c CR