Multimodal convolutional transformer (mct-dd): depression diagnosis through joint task analysis

Bibliographic Details
Parent link:Молодежь и современные информационные технологии.— 2024.— С. 47-51
Main Author: Firoz N.
Other Authors: Berestneva O. G. Olga Grigorievna, Aksenov S. V. Sergey Vladimirovich
Summary:A new deep learning method, Multimodal Convolutional Transformer, analyzes EEG and genetic data to diagnose MDD. This approach achieved high accuracy (97.16%) and surpasses other methods for early MDD detection, potentially aiding healthcare professionals
Текстовый файл
Language:English
Published: 2024
Series:Искусственный интеллект, машинное обучение и большие данные
Subjects:
Online Access:http://earchive.tpu.ru/handle/11683/84880
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=675176
Description
Summary:A new deep learning method, Multimodal Convolutional Transformer, analyzes EEG and genetic data to diagnose MDD. This approach achieved high accuracy (97.16%) and surpasses other methods for early MDD detection, potentially aiding healthcare professionals
Текстовый файл