Multimodal convolutional transformer (mct-dd): depression diagnosis through joint task analysis
| Parent link: | Молодежь и современные информационные технологии.— 2024.— С. 47-51 |
|---|---|
| Main Author: | |
| Other Authors: | , |
| Summary: | A new deep learning method, Multimodal Convolutional Transformer, analyzes EEG and genetic data to diagnose MDD. This approach achieved high accuracy (97.16%) and surpasses other methods for early MDD detection, potentially aiding healthcare professionals Текстовый файл |
| Language: | English |
| Published: |
2024
|
| Series: | Искусственный интеллект, машинное обучение и большие данные |
| Subjects: | |
| Online Access: | http://earchive.tpu.ru/handle/11683/84880 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=675176 |
| Summary: | A new deep learning method, Multimodal Convolutional Transformer, analyzes EEG and genetic data to diagnose MDD. This approach achieved high accuracy (97.16%) and surpasses other methods for early MDD detection, potentially aiding healthcare professionals Текстовый файл |
|---|