Application of several time-frequency analysis methods to the spectral analysis of rock fracture signals
| Parent link: | Перспективы развития фундаментальных наук=Prospects of Fundamental Sciences Development: сборник научных трудов XXI Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 23-26 апреля 2024 г./ Национальный исследовательский Томский политехнический университет ; под ред. И. А. Курзиной [и др.].— .— Томск: Изд-во ТПУ Т. 1 : Физика.— 2024.— С. 374-376 |
|---|---|
| প্রধান লেখক: | |
| সংস্থা লেখক: | |
| অন্যান্য লেখক: | , |
| সংক্ষিপ্ত: | Заглавие с экрана From a signal processing perspective, the acoustic emission and electromagnetic signals emitted by rocks are non-stationary signals. The Fourier transform, which is commonly used for spectrum analysis, is not suitable for analyzing such signals. To address this problem, we used various time-frequency analysis techniques, such as the short-time Fourier transform, continuous wavelet transform, generalized S transform, and Hilbert-Huang transform (HHT). It was found that HHT provides more accurate time-frequency information and reflects a better frequency aggregation effect comparing to the other methods for analyzing such signals Текстовый файл |
| প্রকাশিত: |
2024
|
| বিষয়গুলি: | |
| অনলাইন ব্যবহার করুন: | http://earchive.tpu.ru/handle/11683/80508 |
| বিন্যাস: | বৈদ্যুতিক গ্রন্থের অধ্যায় |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=674785 |
| সংক্ষিপ্ত: | Заглавие с экрана From a signal processing perspective, the acoustic emission and electromagnetic signals emitted by rocks are non-stationary signals. The Fourier transform, which is commonly used for spectrum analysis, is not suitable for analyzing such signals. To address this problem, we used various time-frequency analysis techniques, such as the short-time Fourier transform, continuous wavelet transform, generalized S transform, and Hilbert-Huang transform (HHT). It was found that HHT provides more accurate time-frequency information and reflects a better frequency aggregation effect comparing to the other methods for analyzing such signals Текстовый файл |
|---|