Application of several time-frequency analysis methods to the spectral analysis of rock fracture signals

গ্রন্থ-পঞ্জীর বিবরন
Parent link:Перспективы развития фундаментальных наук=Prospects of Fundamental Sciences Development: сборник научных трудов XXI Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 23-26 апреля 2024 г./ Национальный исследовательский Томский политехнический университет ; под ред. И. А. Курзиной [и др.].— .— Томск: Изд-во ТПУ
Т. 1 : Физика.— 2024.— С. 374-376
প্রধান লেখক: Luo J.
সংস্থা লেখক: Национальный исследовательский Томский политехнический университет (570)
অন্যান্য লেখক: Dmitrieva S. A. (727), Bespalko (Bespal'ko) A. A. Anatoly Alekseevich
সংক্ষিপ্ত:Заглавие с экрана
From a signal processing perspective, the acoustic emission and electromagnetic signals emitted by rocks are non-stationary signals. The Fourier transform, which is commonly used for spectrum analysis, is not suitable for analyzing such signals. To address this problem, we used various time-frequency analysis techniques, such as the short-time Fourier transform, continuous wavelet transform, generalized S transform, and Hilbert-Huang transform (HHT). It was found that HHT provides more accurate time-frequency information and reflects a better frequency aggregation effect comparing to the other methods for analyzing such signals
Текстовый файл
প্রকাশিত: 2024
বিষয়গুলি:
অনলাইন ব্যবহার করুন:http://earchive.tpu.ru/handle/11683/80508
বিন্যাস: বৈদ্যুতিক গ্রন্থের অধ্যায়
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=674785
বিবরন
সংক্ষিপ্ত:Заглавие с экрана
From a signal processing perspective, the acoustic emission and electromagnetic signals emitted by rocks are non-stationary signals. The Fourier transform, which is commonly used for spectrum analysis, is not suitable for analyzing such signals. To address this problem, we used various time-frequency analysis techniques, such as the short-time Fourier transform, continuous wavelet transform, generalized S transform, and Hilbert-Huang transform (HHT). It was found that HHT provides more accurate time-frequency information and reflects a better frequency aggregation effect comparing to the other methods for analyzing such signals
Текстовый файл