Dynamic Covalent Bond: Modes of Activation of the C—ON Bond in Alkoxyamines

Bibliographische Detailangaben
Parent link:Progress in Polymer Science.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 144.— 2023.— 101726, 25 p.
Körperschaft: National Research Tomsk Polytechnic University (570)
Weitere Verfasser: Audran G. Gerard, Bagryanskaya E. G. Elena Grigorjevna, Bikanga R. Raphael, Coote M. L. Michelle, Guselnikova O. A. Olga Andreevna, Hammill Ch. Chelsey, Mark S. R. Silven Remon, Mellet Ph. Phillippe, Postnikov P. S. Pavel Sergeevich
Zusammenfassung:The materials of future depend a lot on properties that are due to “non stable” molecules. Hence, Dynamic Covalent Bonds (DCB) are covalent bonds that are labile under specific stimuli and are integral to the design of next generation materials. Alkoxyamines R1R2NO—R3 exhibit a unique C—O DCB that is nonsymmetric between the adjacent O- and C-atoms. This bond can be cleaved homolytically, heterolytically and mesolytically in response to a wide variety of physical, chemical and biological stimuli, and the kinetics and thermodynamics of cleavage can be tuned on-demand by varying the structure of R1, R2 and R3. Alkoxyamines are easily incorporated into polymers via nitroxide mediated polymerisation (NMP) however, their dynamic covalent properties are yet to be fully exploited in materials sciences. This is in part because reports on C—ON activation are scattered through the broader synthetic, physical and biological chemistry literature, and a comprehensive review of them has been lacking. Herein, 20 leading C—ON activation processes using UV-light, surface plasmon resonance, magnetothermy, electrochemistry, chemical oxidation, protonation, non-covalent bonding, sonication, enzymatic activation among others, are presented and discussed, along with primary examples of their application.
Текстовый файл
AM_Agreement
Sprache:Englisch
Veröffentlicht: 2023
Schlagworte:
Online-Zugang:https://doi.org/10.1016/j.progpolymsci.2023.101726
Format: Elektronisch Buchkapitel
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=674302

MARC

LEADER 00000naa0a2200000 4500
001 674302
005 20240829145252.0
090 |a 674302 
100 |a 20240829d2023 k||y0rusy50 ca 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 |a Dynamic Covalent Bond: Modes of Activation of the C—ON Bond in Alkoxyamines  |f Gerard Audran, Elena G. Bagryanskaya, Raphaël Bikanga [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
320 |a References: 158 tit. 
330 |a The materials of future depend a lot on properties that are due to “non stable” molecules. Hence, Dynamic Covalent Bonds (DCB) are covalent bonds that are labile under specific stimuli and are integral to the design of next generation materials. Alkoxyamines R1R2NO—R3 exhibit a unique C—O DCB that is nonsymmetric between the adjacent O- and C-atoms. This bond can be cleaved homolytically, heterolytically and mesolytically in response to a wide variety of physical, chemical and biological stimuli, and the kinetics and thermodynamics of cleavage can be tuned on-demand by varying the structure of R1, R2 and R3. Alkoxyamines are easily incorporated into polymers via nitroxide mediated polymerisation (NMP) however, their dynamic covalent properties are yet to be fully exploited in materials sciences. This is in part because reports on C—ON activation are scattered through the broader synthetic, physical and biological chemistry literature, and a comprehensive review of them has been lacking. Herein, 20 leading C—ON activation processes using UV-light, surface plasmon resonance, magnetothermy, electrochemistry, chemical oxidation, protonation, non-covalent bonding, sonication, enzymatic activation among others, are presented and discussed, along with primary examples of their application. 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Progress in Polymer Science  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 144  |v 101726, 25 p.  |d 2023 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Audran  |b G.  |g Gerard 
701 1 |a Bagryanskaya  |b E. G.  |g Elena Grigorjevna 
701 1 |a Bikanga  |b R.  |g Raphael 
701 1 |a Coote  |b M. L.  |g Michelle 
701 1 |a Guselnikova  |b O. A.  |c chemist  |c Researcher at Tomsk Polytechnic University, Candidate of Chemical Sciences  |f 1992-  |g Olga Andreevna  |9 17861 
701 1 |a Hammill  |b Ch.  |g Chelsey 
701 1 |a Mark  |b S. R.  |g Silven Remon 
701 1 |a Mellet  |b Ph.  |g Phillippe 
701 1 |a Postnikov  |b P. S.  |c organic chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1984-  |g Pavel Sergeevich  |9 15465 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197  |4 570 
801 0 |a RU  |b 63413507  |c 20240829 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.progpolymsci.2023.101726  |z https://doi.org/10.1016/j.progpolymsci.2023.101726 
942 |c CR