Electrospun magnetoactive hybrid P(VDF-TrFE) scaffolds heavily loaded with citric-acid-modified magnetite nanoparticles

Bibliografiske detaljer
Parent link:Polymer.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 296.— 2024.— Article number 126765, 14 p.
Institution som forfatter: National Research Tomsk Polytechnic University (570)
Andre forfattere: Botvin V. V. Vladimir Viktorovich, Shlapakova L. E. Lada Evgenievna, Mukhortova Yu. R. Yulia Ruslanovna, Vagner D. V. Dmitry Viktorovich, Gerasimov E. Yu. Evgeny, Romanyuk K. N. Konstantin Nikolaevich, Surmeneva M. A. Maria Alexandrovna, Kholkin A. L. Andrei Leonidovich, Surmenev R. A. Roman Anatolievich
Summary:Title screen
The development of magnetoactive scaffolds based on piezoelectric polymers is of great interest due to their ability to exert a magnetoelectric effect, their flexibility, and biocompatibility in various prospective applications. This study describes fabrication of novel electrospun magnetoactive scaffolds based on poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] loaded with a high content (20 or 25 wt%) of magnetite nanoparticles modified by citric acid (Fe3O4-CA) and data on their structure and physicochemical, mechanical, and magnetic properties as well as a piezoelectric response. The suspension method gave a uniform nanoparticles' distribution in the electrospun scaffolds without any noticeable agglomeration. Raman and infrared spectroscopy and X-ray diffraction analysis indicated that the fabricated pure scaffolds and composite P(VDF-TrFE)/Fe3O4-CA scaffolds contain both piezoactive phases (β and γ). The composite scaffolds doped with 20 or 25 wt% of Fe3O4-CA nanoparticles were found to have the highest saturation magnetization, 12.7 and 14.1 emu/g, respectively, superior to that of other PVDF-Fe3O4–based magnetoactive scaffolds. Besides, the incorporation of 20 or 25 wt% of Fe3O4-CA nanoparticles substantially decreased total crystallinity of the piezopolymer scaffolds from 60.7% to 46.9% and 42.7%, respectively. Addition of 20 wt% of Fe3O4-CA nanoparticles also diminished ultimate strength and Young's modulus but improved elongation at break. Meanwhile, in composite P(VDF-TrFE)/Fe3O4-CA scaffolds loaded with 20 wt% of the magnetic filler, the piezoresponse was similar to that of pure P(VDF-TrFE) scaffolds. Such changes in properties are explained by the interaction between P(VDF-TrFE) polymer chains and the surface of Fe3O4-CA nanoparticles via hydrogen bonds and dipolar bonds.
Текстовый файл
AM_Agreement
Sprog:engelsk
Udgivet: 2024
Fag:
Online adgang:https://doi.org/10.1016/j.polymer.2024.126765
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=673707

MARC

LEADER 00000naa0a2200000 4500
001 673707
005 20241016144239.0
090 |a 673707 
100 |a 20240712d2024 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Electrospun magnetoactive hybrid P(VDF-TrFE) scaffolds heavily loaded with citric-acid-modified magnetite nanoparticles  |f Vladimir V. Botvin, Lada E. Shlapakova, Yulia R. Mukhortova [et al.] 
203 |a Текст  |c электронный  |b визуальный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 70 tit. 
330 |a The development of magnetoactive scaffolds based on piezoelectric polymers is of great interest due to their ability to exert a magnetoelectric effect, their flexibility, and biocompatibility in various prospective applications. This study describes fabrication of novel electrospun magnetoactive scaffolds based on poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] loaded with a high content (20 or 25 wt%) of magnetite nanoparticles modified by citric acid (Fe3O4-CA) and data on their structure and physicochemical, mechanical, and magnetic properties as well as a piezoelectric response. The suspension method gave a uniform nanoparticles' distribution in the electrospun scaffolds without any noticeable agglomeration. Raman and infrared spectroscopy and X-ray diffraction analysis indicated that the fabricated pure scaffolds and composite P(VDF-TrFE)/Fe3O4-CA scaffolds contain both piezoactive phases (β and γ). The composite scaffolds doped with 20 or 25 wt% of Fe3O4-CA nanoparticles were found to have the highest saturation magnetization, 12.7 and 14.1 emu/g, respectively, superior to that of other PVDF-Fe3O4–based magnetoactive scaffolds. Besides, the incorporation of 20 or 25 wt% of Fe3O4-CA nanoparticles substantially decreased total crystallinity of the piezopolymer scaffolds from 60.7% to 46.9% and 42.7%, respectively. Addition of 20 wt% of Fe3O4-CA nanoparticles also diminished ultimate strength and Young's modulus but improved elongation at break. Meanwhile, in composite P(VDF-TrFE)/Fe3O4-CA scaffolds loaded with 20 wt% of the magnetic filler, the piezoresponse was similar to that of pure P(VDF-TrFE) scaffolds. Such changes in properties are explained by the interaction between P(VDF-TrFE) polymer chains and the surface of Fe3O4-CA nanoparticles via hydrogen bonds and dipolar bonds. 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Polymer  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 296  |v Article number 126765, 14 p.  |d 2024 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a P(VDF-TrFE) 
610 1 |a Magnetite 
610 1 |a Electrospinning 
610 1 |a Modification 
610 1 |a Magnetoactive scaffold 
610 1 |a Mechanical properties 
701 1 |a Botvin  |b V. V.  |c chemist  |c Senior Researcher of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1991-  |g Vladimir Viktorovich  |9 22791 
701 1 |a Shlapakova  |b L. E.  |c chemical engineer  |c Research Engineer of Tomsk Polytechnic University  |f 1999-  |g Lada Evgenievna  |y Tomsk  |9 88580 
701 1 |a Mukhortova  |b Yu. R.  |c Chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1976-  |g Yulia Ruslanovna  |9 22264 
701 1 |a Vagner  |b D. V.  |g Dmitry Viktorovich 
701 1 |a Gerasimov  |b E. Yu.  |g Evgeny 
701 1 |a Romanyuk  |b K. N.  |g Konstantin Nikolaevich 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |9 15966 
701 1 |a Kholkin  |b A. L.  |c physicist  |c Director of the International Research Center for PMEM of the Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1954-  |g Andrei Leonidovich  |9 22787 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |9 15957 
712 0 2 |a National Research Tomsk Polytechnic University  |9 27197  |4 570 
801 0 |a RU  |b 63413507  |c 20240712  |g RCR 
856 4 |u https://doi.org/10.1016/j.polymer.2024.126765  |z https://doi.org/10.1016/j.polymer.2024.126765 
942 |c CR