Oxidation Performance of Nano-Layered (AlTiZrHfTa)Nx/SiNx Coatings Deposited by Reactive Magnetron Sputtering

Detaylı Bibliyografya
Parent link:Materials.— .— Basel: MDPI AG
Vol. 17, iss. 12.— 2024.— Article number 2799, 24 p.
Müşterek Yazar: National Research Tomsk Polytechnic University (570)
Diğer Yazarlar: Touaibia D. E. Djallel Eddine, Achache S. Sofiane, Bouissil A. Abdelhakim, Parent F. Fabrice, Ghanbaja J. Jaafar, Gorbunova A. Alina, Postnikov P. S. Pavel Sergeevich, Chehimi M. Mohamed, Schuster F. Frederic, Sanchette F. Frederic, El G. M. Garah Mohamed
Özet:Title screen
This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiNx nano-layered architecture. The hardness decreases from 24.3 ± 1.0 GPa to 17.5 ± 1.0 GPa because of the nano-layered architecture, whilst Young’s modulus reduces from 188.0 ± 1.0 GPa to roughly 162.4 ± 1.0 GPa. By increasing the thickness of the SiNx nano-layer, kp values decrease significantly from 3.36 × 10−8 g2 cm−4 h−1 to 6.06 × 10−9 g2 cm−4 h−1. The activation energy increases from 90.8 kJ·mol−1 for (AlTiZrHfTa)Nx nitride coating to 126.52 kJ·mol−1 for the (AlTiZrHfTa)Nx/SiNx nano-layered coating. The formation of a FCC (AlTiZrHfTa)-Nx/a-SiNx nano-layered architecture results in the improvement of the resistance to oxidation at high temperature.
Текстовый файл
Dil:İngilizce
Baskı/Yayın Bilgisi: 2024
Konular:
Online Erişim:https://doi.org/10.3390/ma17122799
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=673582

MARC

LEADER 00000naa0a2200000 4500
001 673582
005 20240705114737.0
090 |a 673582 
100 |a 20240705d2024 k||y0rusy50 ca 
101 1 |a eng 
102 |a CH 
135 |a drcn ---uucaa 
181 0 |a a   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Oxidation Performance of Nano-Layered (AlTiZrHfTa)Nx/SiNx Coatings Deposited by Reactive Magnetron Sputtering  |f Djallel Eddine Touaibia, Sofiane Achache, Abdelhakim Bouissil [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 84 tit. 
330 |a This work uses the direct current magnetron sputtering (DCMS) of equi-atomic (AlTiZrHfTa) and Si targets in dynamic sweep mode to deposit nano-layered (AlTiZrHfTa)Nx/SiNx refractory high-entropy coatings (RHECs). Transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are used to investigate the effect of Si addition on the oxidation behavior of the nano-layered coatings. The Si-free nitride coating exhibits FCC structure and columnar morphology, while the Si-doped nitride coatings present a FCC (AlTiZrHfTa)N/amorphous-SiNx nano-layered architecture. The hardness decreases from 24.3 ± 1.0 GPa to 17.5 ± 1.0 GPa because of the nano-layered architecture, whilst Young’s modulus reduces from 188.0 ± 1.0 GPa to roughly 162.4 ± 1.0 GPa. By increasing the thickness of the SiNx nano-layer, kp values decrease significantly from 3.36 × 10−8 g2 cm−4 h−1 to 6.06 × 10−9 g2 cm−4 h−1. The activation energy increases from 90.8 kJ·mol−1 for (AlTiZrHfTa)Nx nitride coating to 126.52 kJ·mol−1 for the (AlTiZrHfTa)Nx/SiNx nano-layered coating. The formation of a FCC (AlTiZrHfTa)-Nx/a-SiNx nano-layered architecture results in the improvement of the resistance to oxidation at high temperature. 
336 |a Текстовый файл 
461 1 |t Materials  |n MDPI AG  |c Basel 
463 1 |t Vol. 17, iss. 12  |v Article number 2799, 24 p.  |d 2024 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a high-entropy alloys 
610 1 |a coatings 
610 1 |a magnetron sputtering 
610 1 |a (AlTiZrHfTa)/SiNx 
610 1 |a oxidation 
610 1 |a nano-layered 
701 1 |a Touaibia  |b D. E.  |g Djallel Eddine 
701 1 |a Achache  |b S.  |g Sofiane 
701 1 |a Bouissil  |b A.  |g Abdelhakim 
701 1 |a Parent  |b F.  |g Fabrice 
701 1 |a Ghanbaja  |b J.  |g Jaafar 
701 1 |a Gorbunova  |b A.  |c chemical engineer  |c engineer of Tomsk Polytechnic University  |f 1998-  |g Alina  |9 22427 
701 1 |a Postnikov  |b P. S.  |c organic chemist  |c Associate Professor of Tomsk Polytechnic University, Candidate of chemical sciences  |f 1984-  |g Pavel Sergeevich  |9 15465 
701 1 |a Chehimi  |b M.  |g Mohamed 
701 1 |a Schuster  |b F.  |g Frederic 
701 1 |a Sanchette  |b F.  |g Frederic 
701 1 |a El  |b G. M.  |g Garah Mohamed 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197  |4 570 
801 0 |a RU  |b 63413507  |c 20240705 
850 |a 63413507 
856 4 |u https://doi.org/10.3390/ma17122799  |z https://doi.org/10.3390/ma17122799 
942 |c CR