Towards ℓ-conformal Galilei algebra via contraction of the conformal group

Bibliografiske detaljer
Parent link:Nuclear Physics B.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 998.— 2024.— Article number 116395, 10 p.
Hovedforfatter: Masterov I. V. Ivan Viktorovich
Institution som forfatter: National Research Tomsk Polytechnic University (570)
Summary:Title screen
We show that the Inönü-Wigner contraction of 𝑠𝑜(ℓ+1,ℓ+𝑑) with the integer ℓ>1 may lead to algebra which contains a variety of conformal extensions of the Galilei algebra as subalgebras. These extensions involve the ℓ-conformal Galilei algebra in d spatial dimensions as well as l-conformal Galilei algebras in one spatial dimension with 𝑙=3, 5, ..., (2ℓ−1)
Текстовый файл
AM_Agreement
Udgivet: 2024
Fag:
Online adgang:https://doi.org/10.1016/j.nuclphysb.2023.116395
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=673431
Beskrivelse
Summary:Title screen
We show that the Inönü-Wigner contraction of 𝑠𝑜(ℓ+1,ℓ+𝑑) with the integer ℓ>1 may lead to algebra which contains a variety of conformal extensions of the Galilei algebra as subalgebras. These extensions involve the ℓ-conformal Galilei algebra in d spatial dimensions as well as l-conformal Galilei algebras in one spatial dimension with 𝑙=3, 5, ..., (2ℓ−1)
Текстовый файл
AM_Agreement
DOI:10.1016/j.nuclphysb.2023.116395