Valence state conversion of Mn ions in Li2O–ZnO-GeO2 glass-ceramics: Spectral, structural, ESR and XRF studies
| Parent link: | Ceramics International.— .— Amsterdam: Elsevier Science Publishing Company Inc. Vol. 50, iss. 11, Pt. B.— 2024.— P. 19592-19603 |
|---|---|
| Співавтор: | |
| Інші автори: | , , , , , , , , , , |
| Резюме: | Title screen Lithium-zinc-germanate glass-ceramics doped with Mn ions are synthesized by volume crystallization method. Structural studies show nucleation of different forms of lithium germanate crystals depending on the isothermal treatment regime of the initial glass. With the increase of the heat treatment temperature and the lithium content in the initial glass, the [GeO4] /[GeO6] ratio in the nucleated crystalline phases increases. The initial distribution of Mn2+/Mn3+/Mn4+ is defined by the Li2O/ZnO ratio in the glass composition: the ratio growth increases the contribution of Mn4+ over the Mn2+ and Mn3+. Low-temperature heat treatment of initial glass leads to uprise of intense red emission of Mn4+ ions in the octahedral environment. High-temperature heat treatment leads to occurrence of intense green emission related to Mn2+ ions in a tetrahedral environment. Discussions on all transformations of symmetry, the crystal field strength of Mn ions’ environment and their valence state based on the results of optical spectroscopy, ESR and XRF studies are provided. The maximum quantum yield of red luminescence is 61%, and of green luminescence is 23%. The synthesized glass-ceramics can be used as a luminescent converter of the UV LED radiation with the maximum energy efficiency of 20% Текстовый файл AM_Agreement |
| Мова: | Англійська |
| Опубліковано: |
2024
|
| Предмети: | |
| Онлайн доступ: | https://doi.org/10.1016/j.ceramint.2024.03.076 |
| Формат: | Електронний ресурс Частина з книги |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672808 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 672808 | ||
| 005 | 20240529104350.0 | ||
| 090 | |a 672808 | ||
| 100 | |a 20240529d2024 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i |b e | |
| 182 | 0 | |a b | |
| 183 | 0 | |a cr |2 RDAcarrier | |
| 200 | 1 | |a Valence state conversion of Mn ions in Li2O–ZnO-GeO2 glass-ceramics: Spectral, structural, ESR and XRF studies |f E. V. Kulpina, A. N. Babkina, K. S. Zyryanova [et al.] | |
| 203 | |a Текст |b визуальный |c электронный | ||
| 283 | |a online_resource |2 RDAcarrier | ||
| 300 | |a Title screen | ||
| 320 | |a References: 58 tit | ||
| 330 | |a Lithium-zinc-germanate glass-ceramics doped with Mn ions are synthesized by volume crystallization method. Structural studies show nucleation of different forms of lithium germanate crystals depending on the isothermal treatment regime of the initial glass. With the increase of the heat treatment temperature and the lithium content in the initial glass, the [GeO4] /[GeO6] ratio in the nucleated crystalline phases increases. The initial distribution of Mn2+/Mn3+/Mn4+ is defined by the Li2O/ZnO ratio in the glass composition: the ratio growth increases the contribution of Mn4+ over the Mn2+ and Mn3+. Low-temperature heat treatment of initial glass leads to uprise of intense red emission of Mn4+ ions in the octahedral environment. High-temperature heat treatment leads to occurrence of intense green emission related to Mn2+ ions in a tetrahedral environment. Discussions on all transformations of symmetry, the crystal field strength of Mn ions’ environment and their valence state based on the results of optical spectroscopy, ESR and XRF studies are provided. The maximum quantum yield of red luminescence is 61%, and of green luminescence is 23%. The synthesized glass-ceramics can be used as a luminescent converter of the UV LED radiation with the maximum energy efficiency of 20% | ||
| 336 | |a Текстовый файл | ||
| 371 | |a AM_Agreement | ||
| 461 | 1 | |t Ceramics International |c Amsterdam |n Elsevier Science Publishing Company Inc. | |
| 463 | 1 | |t Vol. 50, iss. 11, Pt. B |v P. 19592-19603 |d 2024 | |
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a luminescent glass-ceramics | |
| 610 | 1 | |a tetravalent manganese | |
| 610 | 1 | |a divalent manganese | |
| 610 | 1 | |a ESR | |
| 610 | 1 | |a red-to-green conversion | |
| 610 | 1 | |a XRF | |
| 701 | 1 | |a Kulpina |b E. V. | |
| 701 | 1 | |a Babkina |b A. N. |g Anastasiya Nikolaevna | |
| 701 | 1 | |a Zyryanova |b K. S. |g Kseniya Sergeevna | |
| 701 | 1 | |a Kuzmenko |b N. K. |g Nataljya Konstantinovna | |
| 701 | 1 | |a Ignatjev |b A. I. |g Aleksandr Ivanovich | |
| 701 | 1 | |a Valiev |b D. T. |c specialist in the field of material science |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences |f 1987- |g Damir Talgatovich |9 17370 | |
| 701 | 1 | |a Stepanov |b S. A. |c specialist in the field of lightning engineering |c Engineer of Tomsk Polytechnic University |f 1986- |g Sergey Aleksandrovich |9 17369 | |
| 701 | 1 | |a Pankin |b D. O. |g Dmitry Olegovich | |
| 701 | 1 | |a Povolotskaya |b A. |g Anastasiya | |
| 701 | 1 | |a Platonova |b N. V. |g Nataliya Vladimirovna | |
| 701 | 1 | |a Shendrik |b R. |g Roman | |
| 712 | 0 | 2 | |a National Research Tomsk Polytechnic University |c (2009- ) |9 27197 |
| 801 | 0 | |a RU |b 63413507 |c 20240529 | |
| 850 | |a 63413507 | ||
| 856 | 4 | |u https://doi.org/10.1016/j.ceramint.2024.03.076 |z https://doi.org/10.1016/j.ceramint.2024.03.076 | |
| 942 | |c CR | ||