Valence state conversion of Mn ions in Li2O–ZnO-GeO2 glass-ceramics: Spectral, structural, ESR and XRF studies

Бібліографічні деталі
Parent link:Ceramics International.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 50, iss. 11, Pt. B.— 2024.— P. 19592-19603
Співавтор: National Research Tomsk Polytechnic University
Інші автори: Kulpina E. V., Babkina A. N. Anastasiya Nikolaevna, Zyryanova K. S. Kseniya Sergeevna, Kuzmenko N. K. Nataljya Konstantinovna, Ignatjev A. I. Aleksandr Ivanovich, Valiev D. T. Damir Talgatovich, Stepanov S. A. Sergey Aleksandrovich, Pankin D. O. Dmitry Olegovich, Povolotskaya A. Anastasiya, Platonova N. V. Nataliya Vladimirovna, Shendrik R. Roman
Резюме:Title screen
Lithium-zinc-germanate glass-ceramics doped with Mn ions are synthesized by volume crystallization method. Structural studies show nucleation of different forms of lithium germanate crystals depending on the isothermal treatment regime of the initial glass. With the increase of the heat treatment temperature and the lithium content in the initial glass, the [GeO4] /[GeO6] ratio in the nucleated crystalline phases increases. The initial distribution of Mn2+/Mn3+/Mn4+ is defined by the Li2O/ZnO ratio in the glass composition: the ratio growth increases the contribution of Mn4+ over the Mn2+ and Mn3+. Low-temperature heat treatment of initial glass leads to uprise of intense red emission of Mn4+ ions in the octahedral environment. High-temperature heat treatment leads to occurrence of intense green emission related to Mn2+ ions in a tetrahedral environment. Discussions on all transformations of symmetry, the crystal field strength of Mn ions’ environment and their valence state based on the results of optical spectroscopy, ESR and XRF studies are provided. The maximum quantum yield of red luminescence is 61%, and of green luminescence is 23%. The synthesized glass-ceramics can be used as a luminescent converter of the UV LED radiation with the maximum energy efficiency of 20%
Текстовый файл
AM_Agreement
Мова:Англійська
Опубліковано: 2024
Предмети:
Онлайн доступ:https://doi.org/10.1016/j.ceramint.2024.03.076
Формат: Електронний ресурс Частина з книги
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=672808

MARC

LEADER 00000naa0a2200000 4500
001 672808
005 20240529104350.0
090 |a 672808 
100 |a 20240529d2024 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Valence state conversion of Mn ions in Li2O–ZnO-GeO2 glass-ceramics: Spectral, structural, ESR and XRF studies  |f E. V. Kulpina, A. N. Babkina, K. S. Zyryanova [et al.] 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 58 tit 
330 |a Lithium-zinc-germanate glass-ceramics doped with Mn ions are synthesized by volume crystallization method. Structural studies show nucleation of different forms of lithium germanate crystals depending on the isothermal treatment regime of the initial glass. With the increase of the heat treatment temperature and the lithium content in the initial glass, the [GeO4] /[GeO6] ratio in the nucleated crystalline phases increases. The initial distribution of Mn2+/Mn3+/Mn4+ is defined by the Li2O/ZnO ratio in the glass composition: the ratio growth increases the contribution of Mn4+ over the Mn2+ and Mn3+. Low-temperature heat treatment of initial glass leads to uprise of intense red emission of Mn4+ ions in the octahedral environment. High-temperature heat treatment leads to occurrence of intense green emission related to Mn2+ ions in a tetrahedral environment. Discussions on all transformations of symmetry, the crystal field strength of Mn ions’ environment and their valence state based on the results of optical spectroscopy, ESR and XRF studies are provided. The maximum quantum yield of red luminescence is 61%, and of green luminescence is 23%. The synthesized glass-ceramics can be used as a luminescent converter of the UV LED radiation with the maximum energy efficiency of 20% 
336 |a Текстовый файл 
371 |a AM_Agreement 
461 1 |t Ceramics International  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 50, iss. 11, Pt. B  |v P. 19592-19603  |d 2024 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a luminescent glass-ceramics 
610 1 |a tetravalent manganese 
610 1 |a divalent manganese 
610 1 |a ESR 
610 1 |a red-to-green conversion 
610 1 |a XRF 
701 1 |a Kulpina  |b E. V. 
701 1 |a Babkina  |b A. N.  |g Anastasiya Nikolaevna 
701 1 |a Zyryanova  |b K. S.  |g Kseniya Sergeevna 
701 1 |a Kuzmenko  |b N. K.  |g Nataljya Konstantinovna 
701 1 |a Ignatjev  |b A. I.  |g Aleksandr Ivanovich 
701 1 |a Valiev  |b D. T.  |c specialist in the field of material science  |c Associate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1987-  |g Damir Talgatovich  |9 17370 
701 1 |a Stepanov  |b S. A.  |c specialist in the field of lightning engineering  |c Engineer of Tomsk Polytechnic University  |f 1986-  |g Sergey Aleksandrovich  |9 17369 
701 1 |a Pankin  |b D. O.  |g Dmitry Olegovich 
701 1 |a Povolotskaya  |b A.  |g Anastasiya 
701 1 |a Platonova  |b N. V.  |g Nataliya Vladimirovna 
701 1 |a Shendrik  |b R.  |g Roman 
712 0 2 |a National Research Tomsk Polytechnic University  |c (2009- )  |9 27197 
801 0 |a RU  |b 63413507  |c 20240529 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.ceramint.2024.03.076  |z https://doi.org/10.1016/j.ceramint.2024.03.076 
942 |c CR